
DAIKIRI
Erklärbare Diagnostische KI für industrielle Daten

Project Number: 01IS19085B Start Date of Project: 01/01/2020 Duration: 24 months

Deliverable 2.1
Knowledge Graph Embeddings

Dissemination Level Public

Due Date of Deliverable Month 15, 31/03/2021

Actual Submission Date Month 15, 31/03/2021

Work Package WP2 — Embeddings

Task T2.1, T2.2

Type Report

Approval Status Final

Version 1.0

Number of Pages 17

The information in this document reflects only the author’s views and the Federal Ministry of Education and Research

(BMBF) is not liable for any use that may be made of the information contained therein. The information in this document

is provided “as is” without guarantee or warranty of any kind, express or implied, including but not limited to the fitness

of the information for a particular purpose. The user thereof uses the information at his/ her sole risk and liability.

This project has received funding from the Federal Ministry of Education and Research (BMBF) within the project
DAIKIRI under the grant no 01IS19085B.

D2.1 – v. 1.0
. .

History

Version Date Reason Revised by

1.0 31/03/2021 Final version created Caglar Demir

Author List

Organization Name Contact Information

UPB Caglar Demir caglar.demir@upb.de

. .
Page 1

D2.1 – v. 1.0
. .

Executive Summary

Knowledge graph embedding methods learn continuous vector representations for knowledge graphs
and have been used successfully in a large number of applications. In this work, we present our
six knowledge graph embedding models that were developed within the DAIKIRI project. All our
models can scale well on large knowledge graphs as they retain a linear space complexity in the
number of entities in knowledge graphs. Our first model (Shallom) effectively infers missing relations
given entities on knowledge graphs. Our experiments show that Shallom only requires a maximum
training time of 8 minutes on benchmark datasets. Our second model (ConEx) learns complex-valued
embeddings of entities and relations via combining a 2D convolution with a Hermitian inner product.
By virtue of its novel architecture, ConEx reaches a new state-of-the-art performance on benchmark
datasets for the link prediction problem. Motivated by these results, we extended ConEx into the
quaternions and octonions. We first proposed QMult and OMult that apply quaternion and octonion
multiplications to learn hypercomplex-valued embeddings of entities and relations. Next, we proposed
combining 2D convolution operations with hypercomplex multiplications in a fashion akin to combining
a 2D convolution with a Hermitian inner product. ConvQ and ConvO extends QMult, OMult by
combining 2D convolutions with quaternion and octonion multiplication. Within the DAIKIRI project,
we developed two open-source software libraries. The vectograph library allows to automatically create
knowledge graph from tabular data1. The DICE Embeddings library contains scalable implementations
of our models that can leverage multi CPUs, GPUs and even TPUs2.

1 https://github.com/dice-group/vectograph
2 https://github.com/dice-group/dice-embeddings

. .
Page 2

https://github.com/dice-group/vectograph
https://github.com/dice-group/dice-embeddings

D2.1 – v. 1.0
. .

Contents

1 Introduction 4

2 Background 4

2.1 Link Prediction . 4

2.2 Convolution . 4

2.3 Hypercomplex Numbers . 5

3 Knowledge Graph Embeddings 6

3.1 Shallom . 6

3.2 ConEx . 7

3.3 Convolutional Hypercomplex Embeddings . 8

4 From Tabular Data to Knowledge Graph Embedding 10

4.1 Vectograph . 10

4.2 Dice Embeddings . 10

5 Results 11

6 Conclusion 14

References 14

. .
Page 3

D2.1 – v. 1.0
. .

1 Introduction

The number and size of Knowledge Graphs (KGs) available on the Web and in companies grows
steadily.3 For example, more than 150 billion facts describing more than 3 billion things are available
in the more than 10,000 knowledge graphs published on the Web as Linked Data.4 The wealth of
knowledge available in KGs also serves as background data for an increasing number of intelligent
applications [Wang et al., 2017]. Knowledge Graph Embedding (KGE) methods learn continuous vector
representations for knowledge graphs and have been used successfully in many domains. Applications of
KGEs include collective machine learning, type prediction, link prediction, entity resolution, knowledge
graph completion, question answering, product recommendation [Nickel et al., 2015, Ji et al., 2020].

In this work package, we give an overview of our knowledge graph embedding models that are de-
veloped within the DAIKIRI project. To this end, we first provide a background knowledge in Section 2.
Our six knowledge graph embedding models are elucidated in Section 3. Next, we briefly described
our two open-source software libraries in Section 4. In Section 5, we report prediction performances of
all our approaches on benchmark dataset. Finally, we conclude with Section 6.

2 Background

2.1 Link Prediction

Let E and R represent the sets of entities and relations. Then, a KG can be formalized as a set of
triples G = {(h, r, t) ∈ E × R × E} where each triple contains a head and tail entity h, t ∈ E and a
relation r ∈ R. The link prediction task addresses the problem of predicting whether unseen triples
(i.e., triples not found in G) are true [Ji et al., 2020]. For a scoring function ψ : E × R × E 7→ R, it
should hold that ψ(h, r, t) > ψ(x, y, z) if and only if (h, r, t) is true [Nickel et al., 2015].

2.2 Convolution

A convolution is an integral expressing the amount of overlap of one function f as it is shifted over
another function g. Formally, the convolution operation over a finite range [0, τ] is given by

(f ∗ g)(t) =

∫ τ

0
f(τ)g(t− τ)dτ (1)

where ∗ denotes the convolution operation. f is often called the input while g is called the kernel (or
filter). The output of the f ∗ g is referred as the feature map. In practice, the input often denotes a
multidimensional vector of data while the kernel is a multidimensional array of parameters that are
adapted by the learning algorithm. Suppose that f represents a 2-dimensional image and g denotes a
2-dimensional kernel. Then, 1 can be rewritten as

(f ∗ g)(i, j) =
∑
m

∑
n

f(m,n)g(i−m, j − n), (2)

where i, j denotes the coordinate in 2-D input. We refer to the chapter 9 in [Goodfellow et al., 2016]
for more details on the convolution operation.
3 https://lod-cloud.net/
4 lodstats.aksw.org

. .
Page 4

https://lod-cloud.net/
lodstats.aksw.org

D2.1 – v. 1.0
. .

2.3 Hypercomplex Numbers

The quaternions are a 4-dimensional algebra [Hamilton, 1844]. A quaternion number Q ∈ H is defined
as Q = a + bi + cj + dk where a, b, c, d are real numbers and i, j,k are imaginary units satisfying
Hamilton’s rule: i2 = j2 = k2 = ijk = −1. Q/ = Q/|Q| denotes a unit normalized quaternion with
|Q| =

√
a2 + b2 + c2 + d2. Let Q1 and Q2 ∈ H be two quaternions, the inner product Q1 · Q2 ∈ R of

two quaternions is defined as

Q1 ·Q2 = a1a2 + b1b2 + c1c2 + d1d2. (3)

The quaternion multiplication of Q1 and Q2 is defined as

Q1 ⊗Q2 = (a1a2 − b1b2 − c1c2 − d1d2)
+ (a1b2 + b1a2 + c1d2 − d1c2) i
+ (a1c2 − b1d2 + c1a2 + d1b2) j
+ (a1d2 + b1c2 − c1b2 + d1a2) k.

(4)

Equation (3) and Equation (4) can be considered as scalar-valued functions that the former maps
two quaternions into a real number, while the latter maps two quaternions into a quaternion. For
a d-dimensional quaternion vector a + b i + c j + d k with a, b, c, d ∈ Rd, the inner product and
multiplication is defined accordingly.

The Octonions are an 8-dimensional algebra where an octonion number O1 ∈ O is defined as
O1 = x0 +x1e1 +x2e2 + . . .+x7e7, where e1, e2 . . . e7 are imaginary units [Baez, 2002]. Their product
(F), inner product (·) and vector operations are defined analogously to quaternions. Let O1 = x0 +
x1e1+x2e2+x3e3+x4e4+x5e5+x6e6+x7e7 and O2 = y0+y1e1+y2e2+y3e3+y4e4+y5e5+y6e6+y7e7 be
two octonions, then the inner product of O1 ·O2 ∈ R is obtained by taking the inner products between
corresponding scalars and imaginary units and summing up the four inner products:

O1 ·O2 = x0y0 + x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 + x7y7 (5)

The octonion multiplication O1FO2 of O1 and O2 is defined as

(x0y0 − x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7)
+(x0y1 + x1y0 + x2y3 − x3y2 + x4y5 − x5y4 − x6y7 + x7y6) e1
+(x0y2 − x1y3 + x2y0 + x3y1 + x4y6 + x5y7 − x6y4 − x7y5) e2
+(x0y3 + x1y2 − x2y1 + x3y0 + x4y7 − x5y6 + x6y5 − x7y4) e3
+(x0y4 − x1y5 − x2y6 − x3y7 + x4y0 + x5y1 + x6y2 + x7y3) e4
+(x0y5 + x1y4 − x2y7 + x3y6 − x4y1 + x5y0 − x6y3 + x7y2) e5
+(x0y6 + x1y7 + x2y4 − x3y5 − x4y2 + x5y3 + x6y0 − x7y1) e6

+(x0y7 − x1y6 + x2y5 + x3y4 − x4y3 − x5y2 + x6y1 + x7y0) e7.

A d-dimensional octonion-valued vector is defined as {x0+x1e1+ · · ·+x7e7 : x0, . . . , x7 ∈ Rd} with the
vector operations being defined correspondingly to quaternions. O/ = O/|O| denotes a unit normalized
octonion with |O| =

√
x20 + x21 + · · ·+ x27.

. .
Page 5

D2.1 – v. 1.0
. .

3 Knowledge Graph Embeddings

3.1 Shallom

Link prediction problem refers to predicting missing triples (see Section 2). Most approaches achieve
this goal by predicting entities, given an entity and a relation. We predict missing triples via the relation
prediction. To this end, we frame the relation prediction problem as a multi-label classification problem
and propose a shallow neural model (Shallom) that accurately infers missing relations from entities.
Shallom is analogous to C-BOW as both approaches predict a central token (p) given surrounding
tokens ((s, o)). We defined Shallom as

ψ(s, o) = σ
(
W · ReLU

(
H ·Ψ(s, o) + b1

)
+ b2

)
, (6)

where Ψ(s, o) ∈ R2d, H ∈ Rk×2d, W ∈ R|R|×k, b1 ∈ Rk, and b2 ∈ R|R|. σ(·), ReLU(·) and Ψ(·, ·)
denote the sigmoid, the rectified linear unit and the vector concatenation functions, respectively. Given
(s, o), Ψ(s, o) returns concatenated embeddings of (s, o). Thereafter, we perform two affine transforma-
tions with the ReLU and the sigmoid function to obtain predicted probabilities for relation (ŷ ∈ R|R|).
Finally, the incurred loss is computed by the binary cross-entropy function:

L(y, ŷ) = −
|R|∑
i

(
(yi · log(ŷi)) + (1− yi) · log(1− ŷi)

)
(7)

where ŷ is the vector of predicted probabilities and y is a binary vector of indicating multi labels.
Equation Equation (6) shows that the space complexity of Shallom is linear in the number of entities
of the input knowledge graph.

The architecture of Shallom is visualized in Figure 1. To obtain a composite representation of (s,
o), we concatenate embeddings of entities as opposed to averaging them, since averaging embeddings
loses the order of the input (as in the standard bag-of-words representation [Le and Mikolov, 2014]).
Retaining order of embeddings avoids possible loss of information. As concatenation does not consider
any interaction between the latent features, the first affine transformation is applied with the ReLU
activation function. Thereafter, the second affine transformation is applied with the sigmoid function
to generate probabilities for relations.

Figure 1: Visualization of Shallom.

. .
Page 6

D2.1 – v. 1.0
. .

3.2 ConEx

Inspired by the previous works ComplEx [Trouillon et al., 2016] and ConvE [Dettmers et al., 2018], we
dub our approach ConEx (convolutional complex knowledge graph embeddings).

Sun et al. [2019] suggested that ComplEx is not able to model triples with transitive relations
since ComplEx does not perform well on datasets containing many transitive relations (see Table 5
and Section 4.6 in [Sun et al., 2019]). Motivated by this consideration, we propose ConEx, which
applies the Hadamard product to compose a 2D convolution followed by an affine transformation with
a Hermitian inner product in C. By virtue of the proposed architecture (see Equation (8)), ConEx is
endowed with the capability of

1. leveraging a 2D convolution and

2. degenerating to ComplEx if such degeneration is necessary to further minimize the incurred
training loss.

ConEx benefits from the parameter sharing and equivariant representation properties of convolu-
tions [Goodfellow et al., 2016]. The parameter sharing property of the convolution operation allows
ConEx to achieve parameter efficiency, while the equivariant representation allows ConEx to ef-
fectively integrate interactions captured in the stacked complex-valued embeddings of entities and
relations into computation of scores. This implies that small interactions in the embeddings have small
impacts on the predicted scores5. The rationale behind this architecture is to increase the expressive-
ness of our model without increasing the number of its parameters. As previously stated in [Trouillon
et al., 2016], this nontrivial endeavour is the keystone of embedding models. Ergo, we aim to overcome
the shortcomings of ComplEx in modelling triples containing transitive relations through combining it
with a 2D convolutions followed by an affine transformation on C.

Given a triple (h, r, t), ConEx : C3d 7→ R computes its score as

ConEx(h, r, t) = conv(eh, er) ◦ Re(〈eh, er, et〉), (8)

where conv(·, ·) : C2d 7→ Cd is defined as

conv(eh, er) = f
(

vec(f([eh, er] ∗ ω)) ·W + b
)
, (9)

where f(·) denotes the rectified linear unit function (ReLU), vec(·) stands for a flattening operation,
∗ is the convolution operation, ω stands for kernels/filters in the convolution, and (W,b) characterize
an affine transformation.

By virtue of its novel structure, ConEx is enriched with the capability of controlling the impact
of a 2D convolution and Hermitian inner product in the predicted scores. Ergo, ConEx is less prone
to the vanishing gradient problem as the gradients of losses (see Equation (12)) w.r.t. (eh, er, et) are
allowed to backpropagate through conv(eh, er) or Re(〈eh, er, et〉). Equation (8) can be equivalently
expressed by expanding its real and imaginary parts:

ConEx(h, r, t) =
d∑

k=1

Re(γ)kRe(eh)kRe(er)k.Re(et)k (10)

= 〈Re(γ),Re(eh),Re(er),Re(et)〉
+ 〈Re(γ),Re(eh), Im(er), Im(et)〉
+ 〈Im(γ), Im(eh),Re(er), Im(et)〉
− 〈Im(γ), Im(eh), Im(er),Re(et)〉 . (11)

5 We refer to Section 2 and Goodfellow et al. [2016] for further details of properties of convolutions.

. .
Page 7

D2.1 – v. 1.0
. .

where et is the conjugate of et and γ denotes the output of conv(eh, er) for the brevity. Such mul-
tiplicative inclusion of conv(·, ·) equips ConEx with two more degrees of freedom due the Re(γ) and
Im(γ) parts. We train our approach by following a standard setting [Dettmers et al., 2018, Balažević
et al., 2019b]. Similarly, we applied the standard data augmentation technique, the KvsAll training
procedure6. After the data augmentation technique, for a given pair (h, r), we compute scores for all
x ∈ E with ψ(h, r, x). We then apply the logistic sigmoid function σ(ψ(h, r, t)) to obtain predicted
probabilities of entities. ConEx is trained to minimize the binary cross entropy loss function L that
determines the incurred loss on a given pair (h, r) as defined in the following:

L = − 1

|E|

|E|∑
i=1

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))), (12)

where ŷ ∈ R|E| is the vector of predicted probabilities and y ∈ [0, 1]|E| is the binary label vector.

In Figure 2, we visualized a 2D PCA projection of relation embeddings that are obtained after
ConEx is trained on the FB15K-237 benchmark dataset. Figure 2 shows that inverse relations cluster
in distant regions. Note that we applied the standard data augmentation technique (see section 4.1 in
[Balažević et al., 2019b]). Such relations are renamed by adding suffix of inverse as done in [Balažević
et al., 2019b]. Figure Figure 2 also show that embeddings of person related relations are learned to be
close to each other. Hence, this information can be utilized to predict the birth place of the people in
Freebase as the birth place of 71% of the people in Freebase is missing [Krompaß et al., 2015]. Based
on the visualisation, one may infer that the cluster located on the left upper part of the figure where
person/nationality, person/gender and person/gender, may consist on 1-1 type relations as many
entities as head entities on FB15K-237 do not occur with such relations multiple times. However, this
interpretation requires further investigation.

3.3 Convolutional Hypercomplex Embeddings

Motivated by findings of Demir and Ngomo [2021] in the composition of a 2D convolution with a
Hermitian inner product on complex-valued embeddings. We extend ConEx into quaternions and
octonions. To this end, we first propose QMult and OMult that are multiplicative models. Next,
we build ConvQ and ConvO upon QMult and OMult, respectively. Inspired by the early works
DistMult [Yang et al., 2015] and ConvE [Dettmers et al., 2018], we dub our approaches QMult,
OMult, ConvQ, and ConvO where “Q” represents the quaternion variant and “O” the octonion
variant.

Given a triple (h, r, t), QMult : H3d 7→ R computes a triple score through the quaternion multi-
plication of head entity embeddings eh and relation embeddings er followed by the inner product with
tail entity embeddings et as

QMult(h, r, t) = eh ⊗ er · et, (13)

where eh, er, et ∈ Hd. Similarly, OMult : O3d 7→ R performs the octonion multiplication followed by
the inner product as

OMult(h, r, t) = ehFer · et, (14)

where eh, er, et ∈ Od. Computing scores of triples in this setting can be illustrated in two consecutive
steps: (1) rotating eh through er by applying quaternion/octonion multiplication and (2) measuring
6 Note that the KvsAll strategy is called 1-N scoring in [Dettmers et al., 2018]. Here, we follow the terminology

of [Ruffinelli et al., 2019].

. .
Page 8

D2.1 – v. 1.0
. .

4 2 0 2 4 6

2

0

2

4

6

/people/person/gender

/people/person/gender_reverse

/people/person/languages

/people/person/languages_reverse

/people/person/nationality

/people/person/nationality_reverse

/people/person/place_of_birth

/people/person/place_of_birth_reverse

/people/person/profession

/people/person/profession_reverse

Figure 2: A 2D PCA projection of relation embeddings.

the angle between (eh ⊗ er) and et as expressed by the inner product. During training, this angle is
maximized for triples (h, r, t) ∈ G.

Motivated by the findings of [Demir and Ngomo, 2021], we combine convolution operations with
QMult and OMult as defined in Equation (15) and Equation (16):

ConvQ(h, r, t) = conv(eh, er) ◦ (eh ⊗ er) · et, (15)
ConvO(h, r, t) = conv(eh, er) ◦ (ehFer) · et, (16)

where conv(·, ·) : H2d 7→ R4d (respectively : O2d 7→ R8d) is defined as

conv(eh, er) = f
(

vec(f([eh, er] ∗ ω)) ·W
)
, (17)

where f(·), vec(·), ∗, ω, and W denote the rectified linear unit function, a flattening operation, convo-
lution operation, kernel in the convolution and a projection matrix, respectively. During training, we
follow a 1-N scoring regime (with N = |E|) for efficient training [Dettmers et al., 2018]. In the 1-N
scoring regime, a KGE model takes (s, p) as an input and generates |E| scores for each RDF triple
(s, p, x) with x ∈ E . Training with 1-N scoring regime has two advantages: (1) the regime has an effect
akin to batch normalization, and (2) faster convergence [Dettmers et al., 2018]. We also employ the
Glorot initialization technique for parameters of ConvQ, as using the logistic sigmoid activation often
drives the top hidden layer into saturation provided that parameters are randomly initialized [Glorot
and Bengio, 2010].

. .
Page 9

D2.1 – v. 1.0
. .

4 From Tabular Data to Knowledge Graph Embedding

4.1 Vectograph

We developed an open-source software library for automatically creating a graph structured data from
a given tabular data7. The worfklow of the vectograph library is twofold: (1) discretization and (2)
knowledge graph generation.

Discretization. Discretization is the process of mapping continuous values into discrete coun-
terparts. We are interested in creating a knowledge graph via discretizing input tabular data. In
our work, we consider the input tabular data as a continuous dense matrix, i.e., X ∈ Rn×d. In our
notation, X[i, j] stands for the value in i.th row and j.th column, while X[:, j] stands for all values
indicated under the j.th column. Given X, we first select those columns such that have a more than
k number of unique values, e.g. |{X[:, j]}| > k. Thereafter, we discretize values indicated with the
selected columns into equal-sized buckets. For this purpose, we rely on the quantile-based discretiza-
tion function provided within the Pandas open-source library. For each selected column of X[:, j], we
generate q number of number of quantiles. Note we denote discretized X as X̂. X̂ is n by d matrix
that contains at max d number of categorical features/columns.

Knowledge Graph Generation. We consider i.th row of X̂[i, :] as a Concise Bounded Descrip-
tion8 (CBD) of i.th node in an RDF knowledge graph. In this setting,

• X̂ corresponds to n× d number of RDF triples,

• X̂[i, :] corresponds to CBD of i.th row/node, and

• The j-th column of X̂ is considered as j.th predicate

Figure 3 illustrates simplified representation of the generated knowledge graph, where num_quantile
denotes the number of quantiles for each column to be created, while min_unique_val_per_column
stands for the minimum number of unique values per column to apply discretization. Hence, the
min_unique_val_per_column parameter corresponds to the aforementioned k parameter.

We show that the Vectograph library can be readily applied on standard datasets of the scikit-
learn library [Pedregosa et al., 2011]. In our project page,9 we provide several example to ease the
usage of our open-source software library. Moreover, the Vectograph library works seamless with the
Dice Embeddings open-source library (see Section 4.2) and is already available in the Python Package
Index (https://pypi.org/project/vectograph).

4.2 Dice Embeddings

The Dice Embeddings open-source library contains scalable implementation of many knowledge
graph embedding approaches, including Shallom, ConEx, QMult, OMult, ConvQ, ConvO, DistMult
and ComplEx10. The all aforementioned models can be trained by using CPUs, GPUs and even
TPUs [Demir, 2021]. Embeddings of knowledge graphs are readily created in the comma-separated
value (CSV) format after models are trained.
7 https://github.com/dice-group/vectograph
8 https://www.w3.org/Submission/CBD
9 https://github.com/dice-group/Vectograph/examples
10 https://github.com/dice-group/DAIKIRI-Embedding

. .
Page 10

https://pypi.org/project/vectograph
https://github.com/dice-group/vectograph
https://www.w3.org/Submission/CBD
https://github.com/dice-group/Vectograph/examples
https://github.com/dice-group/DAIKIRI-Embedding

D2.1 – v. 1.0
. .

Figure 3: Usage of the vectograph library on a benchmark dataset provided in the sklearn library.

By using the Dice Embeddings open-source project, we have already made embeddings of following
datasets publicly available:

• DBpedia embeddings11,

• Biopax embeddings12,

• Carcinogenesis embeddings13,

• Mutagenesis embeddings14.

5 Results

In this section, we report the link prediction results on benchmark datasets. We used five of the most
commonly used benchmark datasets (WN18, WN18RR, FB15K, FB15K-237 and YAGO3-10). In Table
Table 3, we provide a brief overview of benchmark datasets. We relied on the standard metrics (MRR
and Hit@N) to quantify prediction performances. For further details pertaining to the metrics, we
refer Section 4 in [Demir et al., 2021, Demir and Ngomo, 2021].

Table 1, and Table 2 report relation prediction performances of Shallom on benchmark datasets.
Results indicate that training Shallom on benchmark datasets is completed within a few minutes.
This is an important result, as it means that our approach can be applied on large knowledge graphs
without requiring high-performance hardware. Our experiments on a subset of DBpedia confirmed this
observation. Shallom required only few hours on learning embeddings of more than 6 mullion entities.
Table 4 and Table 5 report link prediction performances of ConEx on benchmark datasets. We refer
Demir and Ngomo [2021] for further details. Table 6 reports link prediction performances of QMult,
OMult, ConvQ, and ConvO on WN18RR, FB15K-237 and YAGO3-10 benchmark datasets.
11 https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/DBpedia
12 https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/Biopax
13 https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/Carcinogenesis
14 https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/Mutagenesis

. .
Page 11

https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/DBpedia
https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/Biopax
https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/Carcinogenesis
https://hobbitdata.informatik.uni-leipzig.de/KGE/shallom/Mutagenesis

D2.1 – v. 1.0
. .

Table 1: The mean of Hits@N relation prediction and runtime results on WN18RR and FB15K-237.

WN18RR FB15K-237

Hits Hits

RT @1 @3 @5 RT @1 @3 @5

RESCAL 1860±6 .331 .529 .734 5160±4 .115 .327 .456

TransE 960±11 .507 .761 .864 540±10 .774 .899 .918

ComplEx 2160±15 .515 .652 .758 5880±30 .153 .300 .378

CP 840±15 .332 .518 .659 8040±39 .467 .609 .675

DistMult 780±13 .497 .677 .799 1140±8 .092 .176 .428

KGML 840±15 .868 .954 .975 1080±10 .921 .960 .976

RDFDNN 540±8 .819 .967 .985 720±10 .913 .934 .953

RDF2VecSkip-Gram 310±5 .534 .815 .940 482±6 .518 .600 .677

RDF2VecCBOW 337±10 .451 .785 .932 472±8 .522 .608 .687

URC .095 .265 .446 .003 .013 .020

Shallom 610±13 .874 .982 .995 404±8 .948 .993 .997

The superior performance of Shallom stems from: (1) it being a shallow neural model, (2)
optimizing the width of the hidden layer, (3) the task and evaluation measures used. By virtue of
being a shallow Neural Network (NN), Shallom requires only 562 seconds to train on |G| > 106 on
a commodity computer. NNs are required to be wide enough (larger than the input dimension) to
learn disconnected decision regions [Nguyen et al., 2018]. Lastly, given the example (Obama, Hawaii),
Shallom assigns high scores for BirthPlace and low scores for SpouseOf. This stems from the
fact that input G does not involve triples such as (SpouseOf, Hawaii), while it involves many triples
(BirthPlace, Hawaii). Shallom assigns presumably a high score (Obama, BirthPlace, Paderborn)
although such a triple is not contained in G. Since the test splits of the benchmark datasets do
not involve such false triples, the Hit@N metric quantifies merely the performances of the relation
prediction approaches on the valid triples. Ergo, the idea of corrupted triples is not necessary for
relation prediction as each entity pair found in the test split is linked with a relation.

The superior performance of ConEx stems from the composition of a 2D convolution with a Her-
mitian inner product of complex-valued embeddings. Applying the convolution operation on complex-
valued embeddings of subjects and predicates permits ConEx to recognize interactions between sub-
jects and predicates in the form of complex-valued feature maps. Through the affine transformation of
feature maps and their inclusion into a Hermitian inner product involving the conjugate-transpose of
complex-valued embeddings of objects, ConEx can accurately infer various types of relations. More-
over, the number and shapes of the kernels permit to adjust the expressiveness , while ConEx retains
the parameter efficiency due to the parameter sharing property of convolutions. ConvQ and ConvO
generalize ConEx on the quaternion and octonion-valued embeddings. By virtue of the novel design,
the expressiveness of ConEx, ConvQ and ConvO may be further improved by increasing the depth
of the conv(·, ·) via the residual learning block [He et al., 2016].

. .
Page 12

D2.1 – v. 1.0
. .

Table 2: The mean of Hits@N relation prediction and runtime results on YAGO3-10.

YAGO3-10

Hits

RT @1 @3 @5

RDF2VecSkip-Gram 593±11 .487 .796 .875

RDF2VecCBOW 625±12 .491 .803 .873

Shallom 562±19 .630 .983 .996

Table 3: Overview of datasets in terms of number of entities, number of relations, and node degrees
in the train split along with the number of triples in each split of the dataset.

Dataset |E| |R| Degr. (M±SD) |GTrain| |GValidation| |GTest|

YAGO3-10 123,182 37 9.6±8.7 1,079,040 5,000 5,000

FB15K 14,951 1,345 32.46±69.46 483,142 50,000 59,071

WN18 40,943 18 3.49±7.74 141,442 5,000 5,000

FB15K-237 14,541 237 19.7±30 272,115 17,535 20,466

WN18RR 40,943 11 2.2±3.6 86,835 3,034 3,134

Table 4: Link prediction results on WN18 and FB15K. Results are obtained from Balažević et al.
[2019b], Zhang et al. [2019].

WN18 FB15K

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult .822 .936 .914 .728 .654 .824 .733 .546

ComplEx .941 .947 .936 .936 .692 .840 .759 .599

ANALOGY .942 .947 .944 .939 .725 .854 .785 .646

R-GCN .819 .964 .929 .697 .696 .842 .760 .601

TorusE .947 .954 .950 .943 .733 .832 .771 .674

ConvE .943 .956 .946 .935 .657 .831 .723 .558

HypER .951 .958 .955 .947 .790 .885 .829 .734

SimplE .942 .947 .944 .939 .727 .838 .773 .660

TuckER .953 .958 .955 .949 .795 .892 .833 .741

QuatE .950 .962 .954 .944 .833 .900 .859 .800

ConEx .976 .980 .978 .976 .872 .930 .896 .837

. .
Page 13

D2.1 – v. 1.0
. .

Table 5: Link prediction results on WN18RR and FB15K-237. ‡ represents recently reported results
of corresponding models.

WN18RR FB15K-237

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult .430 .490 .440 .390 .241 .419 .263 .155

ComplEx .440 .510 .460 .410 .247 .428 .275 .158

ConvE .430 .520 .440 .400 .335 .501 .356 .237

RESCAL† .467 .517 .480 .439 .357 .541 .393 .263

DistMult† .452 .530 .466 .413 .343 .531 .378 .250

ComplEx† .475 .547 .490 .438 .348 .536 .384 .253

ConvE† .442 .504 .451 .411 .339 .521 .369 .248

HypER .465 .522 .477 .436 .341 .520 .376 .252

NKGE .450 .526 .465 .421 .330 .510 .365 .241

RotatE .476 .571 .492 .428 .338 .533 .375 .241

TuckER .470 .526 .482 .443 .358 .544 .394 .266

QuatE .482 .572 .499 .436 .366 .556 .401 .271

DistMult .439 .527 .455 .399 .353 .539 .390 .260

ComplEx .453 .546 .473 .408 .332 .509 .366 .244

TuckER .466 .515 .476 .441 .363 .553 .400 .268

ConEx .481 .550 .493 .448 .366 .555 .403 .271

6 Conclusion

In this work, we introduced our knowledge graph embedding models that were developed within the
DAIKIRI project. Experiments showed that our approaches are not only effective at predicting missing
information on a given knowledge graph but retain a linear space complexity in the number of entities in
knowledge graphs. This implies that our models can scale on large knowledge graphs. For instance, our
experiments show that Shallom computes embeddings of benchmark datasets within a few minutes.
In future we will work on

• investigating introducing constraints in knowledge graph embeddings and

• include evaluation scenarios in the DICE embeddings software library.

References

John Baez. The octonions. Bulletin of the American Mathematical Society, 39(2):145–205, 2002.

. .
Page 14

D2.1 – v. 1.0
. .

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Hypernetwork knowledge graph embeddings.
In International Conference on Artificial Neural Networks, pages 553–565. Springer, 2019a.

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for knowledge
graph completion. arXiv preprint arXiv:1901.09590, 2019b.

Trapit Bansal, Da-Cheng Juan, Sujith Ravi, and Andrew McCallum. A2n: attending to neighbors
for knowledge graph inference. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4387–4392, 2019.

Caglar Demir. Dice embeddings. Official DICE github project, 1, 2021. URL https://github.com/
dice-group/dice-embeddings.

Caglar Demir and Axel-Cyrille Ngonga Ngomo. Convolutional complex knowledge graph embed-
dings. In Eighteenth Extended Semantic Web Conference - Research Track, 2021. URL https:
//openreview.net/forum?id=6T45-4TFqaX.

Caglar Demir, Diego Moussallem, and Axel-Cyrille Ngonga Ngomo. A shallow neural model for relation
prediction. In 2021 IEEE 15th International Conference on Semantic Computing (ICSC), pages 179–
182. IEEE, 2021.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowl-
edge graph embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

William Rowan Hamilton. Lxxviii. on quaternions; or on a new system of imaginaries in algebra: To the
editors of the philosophical magazine and journal. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 25(169):489–495, 1844.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu. A survey on knowledge
graphs: Representation, acquisition and applications. arXiv preprint arXiv:2002.00388, 2020.

Denis Krompaß, Stephan Baier, and Volker Tresp. Type-constrained representation learning in knowl-
edge graphs. In International semantic web conference, pages 640–655. Springer, 2015.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In International
conference on machine learning, pages 1188–1196, 2014.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. Neural networks should be wide
enough to learn disconnected decision regions. arXiv preprint arXiv:1803.00094, 2018.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015.

. .
Page 15

https://github.com/dice-group/dice-embeddings
https://github.com/dice-group/dice-embeddings
https://openreview.net/forum?id=6T45-4TFqaX
https://openreview.net/forum?id=6T45-4TFqaX

D2.1 – v. 1.0
. .

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on
training knowledge graph embeddings. In International Conference on Learning Representations,
2019.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International Conference on Machine Learning, pages
2071–2080, 2016.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–
2743, 2017.

Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, Samuel Broscheit, and Christian Meilicke. On evalu-
ating embedding models for knowledge base completion. arXiv preprint arXiv:1810.07180, 2018.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations
for learning and inference in knowledge bases. In ICLR, 2015.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In Advances
in Neural Information Processing Systems, pages 2731–2741, 2019.

. .
Page 16

D2.1 – v. 1.0
. .

Table 6: Link prediction results on the WN18RR, F15K-237 and YAGO3-10 datasets in terms of
mean reciprocal rank (MRR), and Hits @1, @3 and @10. The models’ performance is taken from
the corresponding papers with the star(*) denoting values missing in the papers. Param. denotes
the reported number of parameters. Bold and underlined entries denote best and second-best results
per column. Second rows denote link prediction results of models trained on the training plus the
validation sets.

WN18RR FB15K-237 YAGO3-10

Param. MRR @1 @3 @10 Param. MRR @1 @3 @10 Param. MRR @1 @3 @10

RESCAL [2018] * .420 * * .447 * .270 * * .427 * * * * *

ConvE [2019] * .442 * * .504 * .339 * * .521 * * * * *

NKGE [2019] * .45 .42 .47 .53 * .33 .24 .37 .51 * * * * *

DistMult [2019] * .43 .39 .44 .49 * .28 .20 .30 .44 * * * * *

A2N [2019] * .450 .420 .460 .510 * .317 .232 .348 .486 * * * * *

QuatE [2019] 16.38M .481 .436 .50 .564 5.82M .311 .221 .342 .495 * * * * *

pRotatE [2019] * .462 .417 .479 .552 * .328 .230 .365 .524 * * * * *

HypER [2019a] * .465 .436 .477 .522 * .341 .252 .376 .520 * .533 .455 .580 .678

DistMult [2018] * .430 .390 .440 .490 * .240 .160 .260 .420 * .340 .240 .380 .540

ConvE [2018] * .430 .400 .440 .520 * .335 .237 .356 .501 * .440 .350 .490 .620

ComplEx [2018] * .440 .410 .460 .510 * .247 .158 .275 .428 * .360 .260 .400 .550

RotatE [2019] 40.95M .476 .428 .492 .571 29.32M .338 .241 .375 .533 * .495 .402 .550 .670

QMult 16.39M .439 .394 .458 .535 6.01M .347 .252 .383 .535 49.30M

.457 .412 .472 .554 .366 .273 .410 .561 .547 .463 .597 .697

ConvQ 21.51M .457 .424 .469 .524 11.13M .343 .251 .376 .528 40.26M

.474 .441 .488 .539 .365 .271 .402 .552 .538 .456 .588 .689

OMult 16.38M .449 .410 .470 .539 6.01M .341 .250 .376 .525 49.30M

.465 .425 .476 .553 .367 .271 .410 .557 .533 .446 .581 .693

ConvO 21.51M .460 .427 .473 .521 11.13M .341 .250 .376 .525 40.26M

.474 .441 .488 .539 .367 .274 .403 .553 .513 .426 .560 .675

. .
Page 17

	Introduction
	Background
	Link Prediction
	Convolution
	Hypercomplex Numbers

	Knowledge Graph Embeddings
	Shallom
	ConEx
	Convolutional Hypercomplex Embeddings

	From Tabular Data to Knowledge Graph Embedding
	Vectograph
	Dice Embeddings

	Results
	Conclusion
	References

