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Executive Summary

Knowledge Graph Embedding (KGE) models learn continuous vector representations for Knowledge
Graphs (KGs). These representations have been successfully applied in a large number of applications.
In the previous deliverable (D2.1), we presented our six KGE models that were developed within the
DAIKIRI project. As a result of our investigations in KGEs, we published three research papers in
top-tier conferences [Demir et al., 2021a, Demir and Ngomo, 2021, Demir et al., 2021b]. All our models
can scale well on large KGs as they retain a linear space complexity in the size of KGs. In this work, we
investigate (1) novel techniques allowing to introduce constraints in KGEs and (2) developing a scalable
implementation of models. Findings of our investigation in constraining KGEs indicate that leveraging
the domain and range information of relations in predicting of missing links improve generalization
performances of all models on all benchmark datasets. This is an important finding as our technique
can be readily applied in any pretrained model, i.e., no extra computation is required. Our results
also indicate that state-of-the-art KG models do not fully capture information pertaining to domains
and ranges of relations encoded in benchmark datasets.

Our investigation on publicly available implementations of KGE models suggest that many frame-
work do not facilitate parallelism, let alone distributed computing. To best of our knowledge, publicly
available KGE frameworks do not utilize multi-CPUs in preprocessing of input KGs. This indicates
that loading a KG into a memory is often carried out by using a single CPU. This design decision
may stem from the fact that benchmark KG datasets for link prediction are relatively small compared
to KGs used in business related applications. Hence, many KGE frameworks may not be suitable for
applications outside of research domains. Motivated by this shortcoming, we developed the DAIKIRI-
Embedding framework1. Our framework contains scalable implementations of many KGE models.
DAIKIRI-Embedding leverages multi-CPUs, GPUs, and even TPUs during the training and
testing phases via Pytorch-Lightning [Falcon and Cho, 2020]. Moreover, DAIKIRI-Embedding uti-
lizes multi-CPUs to load/parse large KGs via the DASK framework [Rocklin, 2015]. Hence,
the DAIKIRI-Embedding framework can be applied on large KGs. To evaluate the scalability of our
framework, we performed numerous experiments. We have successfully used the DAIKIRI-Embedding
framework to learn embeddings of DBpedia KG that contain more than hundreds of millions of triples.
We made scripts and pre-trained embeddings publicly available on the Hobbit platform.

1 https://github.com/dice-group/DAIKIRI-Embedding

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Introduction

Over the last decade, KGs have become indispensable in a large number of data-driven applica-
tions [Hogan et al., 2021]. For instance, many companies followed the example of the Google Knowledge
Graph, including LinkedIn, Microsoft, eBay, Amazon, AirBnB, and Uber [Singhal, 2012, He et al., 2016,
Pittman, 2017, Krishnan, 2018, Chang, 2018, Hamad et al., 2018]. The wealth of knowledge available
in KGs also serves as background data for an increasing number of intelligent applications [Wang et al.,
2017], including web search, cancer research, and even entertainment [Eder, 2012, Saleem et al., 2014,
Malyshev et al., 2018]. However, most KGs on the Web are far from being complete [Nickel et al.,
2015]. For instance, the birth places of 71% of the people in Freebase and 66% of the people in DB-
pedia are not found in the respective KGs. In addition, more than 58% of the scientists in DBpedia
are not linked to the predicate that describes what they are known for [Krompaß et al., 2015]. KGE
models have been particularly successful at tackling many problems such as relation prediction, link
prediction, entity resolution, question answering, product recommendation [Nickel et al., 2015, Ji et al.,
2020]. In this work, we focus on KGE approaches that are trained to tackle the link prediction task.
Link prediction on KGs refers to identifying such missing information [Dettmers et al., 2018]. KGE
models have been particularly successful at tackling the link prediction task [Nickel et al., 2015].

Recent studies highlight the ever-increasing predictive ability of KGE models. Although, KGE
models can accurately predict missing links in the input KG by means of learned vector representations
of entities and relations, they often lack of explainability in their predictions. Motivated by this
inability, we investigated constraints in KGEs. Most KGEs models do not facilitate the domain expert
knowledge in the learning process. This often stems from the fact that incorporating domain knowledge
in the learning process is not trivial. Moreover, incorporating the domain expert knowledge into the
learning process may induce bias in the predictions. In this work, we investigate introducing constraints
in the learning phase, as well as in the testing phase. Our results indicate that utilizing the domain and
range information of relations in the testing phase improve generalization performances of all models
on all benchmark datasets. In turn, constraining embeddings during the training phase based on a
similarity function as previously done by Demir and Ngomo [2019] led to inferiors performances in the
link prediction task.

The structure of this work is as follows: Section 2 briefly introduces preliminaries. In Section 3, we
elucidate our constraint techniques for KGEs. Section 4 explains our KGE framework developed within
the DAIKIRI project. Next, Section 5 provides details of our experimental setup used in experiments.
In Section 6, we report results of our experiments. Finally, we conclude this work with Section 7.

2 Background

In this section, we briefly introduce necessary background knowledge for this work. In Section 2.1,
we provide the definition of knowledge graph and link prediction used throught our work. Section 2.2
introduce our six knowledge graph embedding model. We refer [Demir et al., 2021a, Demir and Ngomo,
2021, Demir et al., 2021b] for more details pertaining to our models.

2.1 Knowledge Graph & Link Prediction

Let E and R represent the sets of entities and relations. Then, a KG can be formalised as a set of
triples G = {(h, r, t)} ⊆ E × R × E where each triple contains two entities h, t ∈ E and a relation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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r ∈ R. We defined the domain of a relation as follows

domain(r) = {h | ∀ (h, r, t) ∈ G}. (1)

Similarly, the range of a relation is defined as

range(r) = {t | ∀ (h, r, t) ∈ G}. (2)

The domain rand range of a relation is utilized at constraining KGE models. The link prediction
problem is formalised by learning a scoring function ψ : E × R × E → R ideally characterized by
ψ(h, r, t) > ψ(x, y, z) if (h, r, t) is true and (x, y, z) is not [Dettmers et al., 2018, Demir et al., 2021b].

2.2 Knowledge Graph Embeddings

2.2.1 Shallom

Link prediction problem refers to predicting missing triples (see Section 2.1). Most approaches achieve
this goal by predicting entities, given an entity and a relation. Shallom tackles the link prediction
problem by predicting missing relations. The learning problem is formalized as a multi-label classifica-
tion problem. Shallom is analogous to C-BOW as both approaches predict a central token (p) given
surrounding tokens ((s, o)). We defined Shallom as

ψ(s, o) = σ
(
W · ReLU

(
H ·Ψ(s, o) + b1

)
+ b2

)
, (3)

where Ψ(s, o) ∈ R2d, H ∈ Rk×2d, W ∈ R|R|×k, b1 ∈ Rk, and b2 ∈ R|R|. σ(·), ReLU(·) and Ψ(·, ·)
denote the sigmoid, the rectified linear unit and the vector concatenation functions, respectively. Given
(s, o), Ψ(s, o) returns concatenated embeddings of (s, o). Thereafter, we perform two affine transforma-
tions with the ReLU and the sigmoid function to obtain predicted probabilities for relation (ŷ ∈ R|R|).
Finally, the incurred loss is computed by the binary cross-entropy function:

L(y, ŷ) = −
|R|∑
i

(
(yi · log(ŷi)) + (1− yi) · log(1− ŷi)

)
(4)

where ŷ is the vector of predicted probabilities and y is a binary vector of indicating multi labels. Equa-
tion (3) shows that the space complexity of Shallom is linear in the number of entities of the input
KG.

The architecture of Shallom is visualized in Figure 1. To obtain a composite representation of (s,
o), we concatenate embeddings of entities as opposed to averaging them, since averaging embeddings
loses the order of the input (as in the standard bag-of-words representation [Le and Mikolov, 2014]).
Retaining order of embeddings avoids possible loss of information. As concatenation does not consider
any interaction between the latent features, the first affine transformation is applied with the ReLU
activation function. Thereafter, the second affine transformation is applied with the sigmoid function
to generate probabilities for relations.

2.2.2 ConEx

Inspired by the previous works ComplEx [Trouillon et al., 2016] and ConvE [Dettmers et al., 2018], we
dub our approach ConEx (convolutional complex knowledge graph embeddings).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 5



D2.2 – v. 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1: Visualization of Shallom.

Sun et al. [2019] suggested that ComplEx is not able to model triples with transitive relations
since ComplEx does not perform well on datasets containing many transitive relations (see Table 5
and Section 4.6 in [Sun et al., 2019]). Motivated by this consideration, we propose ConEx, which
applies the Hadamard product to compose a 2D convolution followed by an affine transformation with
a Hermitian inner product in C. By virtue of the proposed architecture (see Equation (5)), ConEx is
endowed with the capability of

1. leveraging a 2D convolution and

2. degenerating to ComplEx if such degeneration is necessary to further minimize the incurred
training loss.

ConEx benefits from the parameter sharing and equivariant representation properties of convolu-
tions [Goodfellow et al., 2016]. The parameter sharing property of the convolution operation allows
ConEx to achieve parameter efficiency, while the equivariant representation allows ConEx to ef-
fectively integrate interactions captured in the stacked complex-valued embeddings of entities and
relations into computation of scores. This implies that small interactions in the embeddings have small
impacts on the predicted scores2. The rationale behind this architecture is to increase the expressive-
ness of our model without increasing the number of its parameters. As previously stated in [Trouillon
et al., 2016], this nontrivial endeavour is the keystone of embedding models. Ergo, we aim to overcome
the shortcomings of ComplEx in modelling triples containing transitive relations through combining it
with a 2D convolutions followed by an affine transformation on C.

Given a triple (h, r, t), ConEx : C3d 7→ R computes its score as

ConEx(h, r, t) = Re(〈conv(eh, er), eh, er, et〉), (5)

where conv(·, ·) : C2d 7→ Cd is defined as

conv(eh, er) = f
(

vec(f([eh, er] ∗ ω)) ·W + b
)
, (6)

where f(·) denotes the rectified linear unit function (ReLU), vec(·) stands for a flattening operation,
∗ is the convolution operation, ω stands for kernels/filters in the convolution, and (W,b) characterize
an affine transformation.

By virtue of its novel structure, ConEx is enriched with the capability of controlling the impact
of a 2D convolution and Hermitian inner product in the predicted scores. Ergo, ConEx is less prone
2 We refer to Section 2 and Goodfellow et al. [2016] for further details of properties of convolutions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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to the vanishing gradient problem as the gradients of losses (see Equation (9)) w.r.t. (eh, er, et) are
allowed to backpropagate through conv(eh, er) or Re(〈eh, er, et〉). Equation (5) can be equivalently
expressed by expanding its real and imaginary parts:

ConEx(h, r, t) = Re
( d∑

k=1

(γ)k(eh)k(er)k(et)k

)
(7)

= 〈Re(γ),Re(eh),Re(er),Re(et)〉
+ 〈Re(γ),Re(eh), Im(er), Im(et)〉
+ 〈Im(γ), Im(eh),Re(er), Im(et)〉
− 〈Im(γ), Im(eh), Im(er),Re(et)〉 (8)

where et is the conjugate of et and γ denotes the output of conv(eh, er) for the brevity. Such mul-
tiplicative inclusion of conv(·, ·) equips ConEx with two more degrees of freedom due the Re(γ) and
Im(γ) parts. We train our approach by following a standard setting [Dettmers et al., 2018, Balažević
et al., 2019b]. Similarly, we applied the standard data augmentation technique, the KvsAll training
procedure3. After the data augmentation technique, for a given pair (h, r), we compute scores for all
x ∈ E with ψ(h, r, x). We then apply the logistic sigmoid function σ(ψ(h, r, t)) to obtain predicted
probabilities of entities. ConEx is trained to minimize the binary cross entropy loss function L that
determines the incurred loss on a given pair (h, r) as defined in the following:

L = − 1

|E|

|E|∑
i=1

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))), (9)

where ŷ ∈ R|E| is the vector of predicted probabilities and y ∈ [0, 1]|E| is the binary label vector.

In Figure Figure 2, we visualized a 2D PCA projection of relation embeddings that are obtained
after ConEx is trained on the FB15K-237 benchmark dataset. Figure 2 shows that inverse relations
cluster in distant regions. Note that we applied the standard data augmentation technique (see section
4.1 in [Balažević et al., 2019b]). Such relations are renamed by adding suffix of inverse as done
in [Balažević et al., 2019b]. Figure Figure 2 also show that embeddings of person related relations are
learned to be close to each other. Hence, this information can be utilized to predict the birth place of
the people in Freebase as the birth place of 71% of the people in Freebase is missing [Krompaß et al.,
2015]. Based on the visualisation, one may infer that the cluster located on the left upper part of
the figure where person/nationality, person/gender and person/gender, may consist on 1-1 type
relations as many entities as head entities on FB15K-237 do not occur with such relations multiple
times. However, this interpretation requires further investigation.

2.2.3 Convolutional Hypercomplex Embeddings

Motivated by findings of Demir and Ngomo [2021] in the composition of a 2D convolution with a
Hermitian inner product on complex-valued embeddings. We extend ConEx into quaternions and
octonions. To this end, we first propose QMult and OMult that are multiplicative models. Next,
we build ConvQ and ConvO upon QMult and OMult, respectively. Inspired by the early works
DistMult [Yang et al., 2015] and ConvE [Dettmers et al., 2018], we dub our approaches QMult,
OMult, ConvQ, and ConvO where “Q” represents the quaternion variant and “O” the octonion
variant.
3 Note that the KvsAll strategy is called 1-N scoring in [Dettmers et al., 2018]. Here, we follow the terminology

of [Ruffinelli et al., 2019].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 2: A 2D PCA projection of relation embeddings.

Given a triple (h, r, t), QMult : H3d 7→ R computes a triple score through the quaternion multi-
plication of head entity embeddings eh and relation embeddings er followed by the inner product with
tail entity embeddings et as

QMult(h, r, t) = eh ⊗ er · et, (10)

where eh, er, et ∈ Hd. Similarly, OMult : O3d 7→ R performs the octonion multiplication followed by
the inner product as

OMult(h, r, t) = ehFer · et, (11)

where eh, er, et ∈ Od. Computing scores of triples in this setting can be illustrated in two consecutive
steps: (1) rotating eh through er by applying quaternion/octonion multiplication and (2) measuring
the angle between (eh ⊗ er) and et as expressed by the inner product. During training, this angle is
maximized for triples (h, r, t) ∈ G.

Motivated by the findings of [Demir and Ngomo, 2021], we combine convolution operations with
QMult and OMult as defined in Equation (12) and Equation (13):

ConvQ(h, r, t) = conv(eh, er) ◦ (eh ⊗ er) · et, (12)
ConvO(h, r, t) = conv(eh, er) ◦ (ehFer) · et, (13)

where conv(·, ·) : H2d 7→ R4d (respectively : O2d 7→ R8d) is defined as

conv(eh, er) = f
(

vec(f([eh, er] ∗ ω)) ·W
)
, (14)

where f(·), vec(·), ∗, ω, and W denote the rectified linear unit function, a flattening operation, convo-
lution operation, kernel in the convolution and a projection matrix, respectively. During training, we
follow a 1-N scoring regime (with N = |E|) for efficient training [Dettmers et al., 2018]. In the 1-N
scoring regime, a KGE model takes (s, p) as an input and generates |E| scores for each RDF triple

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(s, p, x) with x ∈ E . Training with 1-N scoring regime has two advantages: (1) the regime has an effect
akin to batch normalization, and (2) faster convergence [Dettmers et al., 2018]. We also employ the
Glorot initialization technique for parameters of ConvQ, as using the logistic sigmoid activation often
drives the top hidden layer into saturation provided that parameters are randomly initialized [Glorot
and Bengio, 2010].

3 Constraining Knowledge Graph Embeddings

Most state-of-the-art knowledge graph embedding approaches do not explicitly involve any form of
constraints. To improve generalization performances, approaches often rely on constraining magnitude
of embeddings by mean of applying L-2 or N3 regularization, while few approaches normalized embed-
dings via the batch normalization or the group normalization techniques. However, most approaches
do not incorporate the domain expert knowledge as constraints in KGEs. In this section, we introduce
our constraining techniques.

In Section 3.1, we elucidate the particular incorporation of the domain expert knowledge by means
of the domain and range information of relations in KGEs. Our proposed technique

• incorporates the domain knowledge with no extra computation and

• can be readily applied for any knowledge graph embedding model.

In Section 3.2, we introduce our second constraint technique that is motivated by the Elastic
Net Regularization and PYKE KGE model [Demir and Ngomo, 2019]. More specifically, we propose
a similarly function that harmonically combines the domain and range similarity between relations.
Based on this similarity function, we designed a regularisation technique that the output of the radial
basis kernel function of two embeddings of relations to be similar to the aforementioned similarity
function.

3.1 Constraining Prediction To Recover Semantic Errors

Motivation. Our attempt of constraining knowledge graph embeddings is motivated by the standard
training technique (the KvsAll scoring) for knowledge graph embedding models. Figure 3 illustrates
the KvsAll scoring technique. Most knowledge graph embedding models including our models are
trained with the KvsAll technique. For each triple (h, r, t), an approach (ConvE in Figure 3) takes
an embedding of head entity denoted by purple row and an embedding of relation denoted by green
row. After performing sequence of computations, unnormalized log probabilities (logits) are generated.
Thereafter, logits are normalized via the sigmoid loss function to obtain predictions ŷ ∈ (0, 1)|E|.
Thereupon, the incurred loss on a given pair (h, r) is computed via the binary cross entropy loss
function (see Equations (4) and (9)). Within this setting, learning embeddings of knowledge graphs can
be seen as tackling multi-label classification problem, where an input x ∈ R2d and an label y ∈ 0, 1|E|

that is a binary vector indicating multi-labels. For instance, given (BarackObama, type), indexes of
Person and Politician in y is set to be 1, wheres indexes of SportCar, Country, or FootballPlayer
are set to be 0.

State-of-the-art models are often trained with the KvsAll scoring technique [Ruffinelli et al., 2019].
However, applying the KvsAll scoring technique becomes computationally infeasible as the size of the
unique entities increases (|E|). To update embeddings of a single input w.r.t. the incurred loss, we
need to store (1) embeddings of all entities and relations, (2) derivative of loss w.r.t. parameters

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3: Illustration of the KvsAll scoring technique via ConvE approach obtained from [Dettmers
et al., 2018]

in intermediary computations (the dropout, feature map, fully connected projection, second dropout
in Figure 3), and importantly (3) derivatives of loss w.r.t. embeddings of all entities obtained at
generation predictions. As the size of the embedding dimension and the size of the unique entities
increases, (3) becomes computationally infeasible, hence requires performant hardware.

The KvsAll scoring technique implicitly leads knowledge graph embedding models to consider losses
incurred due to all non-existing triples equally important. For instance, given (BarackObama, type),
losses incurred on (BarackObama, type, Country), (BarackObama, type, SportCar), and (BarackObama,
type, FootballPlayer) are equally important as far as the optimization process is concerned. We pro-
pose to make a distinction between losses incurred on non-existing triples (x, y, z) 6∈ G. To this end, we
are interested in utilizing the domain and range information of relations that are readily available in the
input KG. Within this setting, a loss occurred on (BarackObama, type, FootballPlayer) is considered
as less important than a loss occurred on (BarackObama, type, Country) and and (BarackObama, type,
SportCar).Such constraint can be applied during the training phase by making labels less sparse, i.e.,
setting low scores for those entities that are subsumed by the range of relations, or during the testing
phase. Due to the space constraint, here, we focus on introducing the domain and range constraints
in prediction.

Constraining predictions during testing. We firstly obtain the domain and range information
of relations on GTrain via Equation (1) and Equation (2). Next, given a test triple (h, r, t), we obtain
|E| number of predicted scores based on (h, r) by using a pre-trained model. Thereupon, we filter
scores of {t ∈ E|t 6∈ range(r)}. Hence, we constrain predictions by ignoring entities that are not
containing in the range of relations. A domain expert intuitively may know that BarackObama is
not likely to have a type of Country or SportCar, whereas BarackObama is likely to have a type of
FootballPlayer as the following is expected to hold for consistent knowledge graphs: ¬∃x ∈ E :
(x, type, Person) ∧ (x, type, SportCar).

The utility of this constraint can be easily validated by comparing the link prediction results of
models with and without this constraint. If model capture the range information of relation, applying
this constraint is expected to not increase the link prediction results.

3.2 Elastic Constraint Regularization

During our investigation of constraining KGE models, we explored several different techniques. How-
ever, they often lead to inferior performance in the link prediction task. Here, we introduce ElasticReg
constraint that constraints the distances between relations during the training phase based on a se-
mantic similarity measure between relations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We define this similarity function ϕ : R×R 7→ [0, 1] as follows

ϕ(ri, rj) = α
|domain(ri) ∩ domain(rj)|

β(|domain(ri)|+ |domain(rj)|)|
+ (1− α)

|range(ri) ∩ range(rj)|
β(|range(ri)|+ |range(rj)|)

, (15)

where α ∈ [0, 1], β = .5. In Equation (15), the importance of domain and range information can
be controlled via α as similarly done in L-1 and L-2 regularization trade off in the Elastic Net. The
similarity matrix A between relations is constructed via ϕ. A is a symmetric and semi positive definite
matrix, i.e,. the diagonal values are 1.0 and the eigenvalues are strictly positive values. Our goal is to
constraint embeddings of relations during training through A. Hence, embeddings of relations having
similar domains and/or ranges are constrained to be similar. To quantify the degree of similarity in
the vector space, we rely on the radial basis kernel function:

K(erj , eri) = exp
(
−
||eri , erj ||2

2σ2

)
. (16)

During the training phase, embeddings of relations are updated to minimize the binary cross entropy
function and the constraint error

(
ϕ(ri, rj)−K(erj , eri)

)2.
4 DAIKIRI-Embedding and Scalability

In this section, we elucidate the three components of the DAIKIRI-Embedding framework.

Preprocessing. During preprocessing a knowledge graph in the form of n-triples, we rely on the
DASK framework [Rocklin, 2015]. The DASK framework allows to utilize multi-CPUs at preprocess-
ing/loading large data in the form of CSV, Parquet, and HDF among many others. We load the n-triple
formatted knowledge graph by using the white-space as a column separator. This permits using all
CPUs during loading large datasets. Given that head entity/subject and tail entity/predicate must
not contain any white space according to RDF4, we alleviate any error due to inconsistent formatting.

Training. To implement a scalable training module in the DAIKIRI-Embedding framework,
we rely on PyTorch Lightning 5. PyTorch Lightning facilitates using parallelism, hence, enhance
scalability. PyTorch Lightning is one of the mostly used deep learning framework along with PyTorch
and Tensorflow [Falcon and Cho, 2020].

Evaluation. In many industrial application, creating a training, validation, and test split of the
data is not trivial. With this consideration, we implement two different evaluation scenario in the
DAIKIRI-Embedding framework:

• K-fold cross entropy with different initialization on the train split and

• the standard testing on the test split.

5 Experimental Setup

5.1 Datasets

We used three most commonly used link benchmark datasets to evaluate the impact of our constraint
techniques. To evaluate the scalability of the DAIKIRI-Embedding framework, we used the most recent
4 https://www.w3.org/TR/n-triples/
5 https://www.pytorchlightning.ai/
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DBpedia dataset after we removed all triples containing literals. In Table 1, we provide a brief overview
of benchmark datasets.

Table 1: Overview of datasets in terms of number of entities, number of relations, and node degrees
in the train split along with the number of triples in each split of the dataset.

Dataset |E| |R| Degr. (M±SD) |GTrain| |GValidation| |GTest|

DBpedia 114,747,965 13,906 - 375,900,462 - -

YAGO3-10 123,182 37 9.6±8.7 1,079,040 5,000 5,000

FB15K 14,951 1,345 32.46±69.46 483,142 50,000 59,071

WN18 40,943 18 3.49±7.74 141,442 5,000 5,000

FB15K-237 14,541 237 19.7±30 272,115 17,535 20,466

WN18RR 40,943 11 2.2±3.6 86,835 3,034 3,134

5.2 Evaluation

We used publicly available pretrained ConEx, QMult, OMult, ConvQ, and ConvO. We employ
the standard metrics filtered Mean Reciprocal Rank (MRR) and hits at N (H@N) for link predic-
tion [Dettmers et al., 2018, Balažević et al., 2019a]. For each test triple (h, r, t), we construct its
reciprocal (t, r−1, h) and add it into Gtest which is a common technique to decrease the computational
cost during testing [Dettmers et al., 2018]. Then, for each test triple (h, r, t), we compute the score
of (h, r, x) triples for all x ∈ E and calculate the filtered ranking rankt of the triple having t. Then
we compute the MRR: 1

|Gtest|
∑

(h,r,t)∈Gtest
1

rankt
. Consequently, given a (h, r, t) ∈ Gtest, we compute

ranks of missing entities based on the rank of head and tail entities as similarly done in Balažević et al.
[2019a,b], Dettmers et al. [2018].

5.3 Reproducibility

We used pretrained models provided in Demir et al. [2021a]. We refer to the project page to reproduce
our link prediction experiments6.

6 Results

6.1 Link Prediction

Table 2 reports link prediction performances on all three benchmark datasets. Results indicate that
constraining predictions via the range information of relations increase generalization performances of
all approaches on all datasets. This is an important finding as results suggest that

• KGE approaches do not fully capture the range information of relations, and

• generalization performances can be increased by only a look-up operation.
6 https://github.com/dice-group/Convolutional-Hypercomplex-Embeddings-for-Link-Prediction
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Table 2: Link prediction results on WN18RR, F15K-237 and YAGO3-10. Results are obtained from
corresponding papers. Bold entries denote best results. The dash(-) denotes values missing in the
papers. † represents applying the range constraint at prediction time

WN18RR FB15K-237 YAGO3-10

MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

TransE [Ruffinelli et al., 2019] .228 .053 .368 .520 .313 .221 .347 .497 - - - -

ConvE [Ruffinelli et al., 2019] .442 .411 .451 .504 .339 .248 .359 .521 - - - -

TuckER [Balažević et al., 2019b] .470 .443 .482 .526 .358 .266 .394 .544 - - - -

A2N [Bansal et al., 2019] .450 .420 .460 .510 .317 .232 .348 .486 - - - -

QuatE [Zhang et al., 2019] .482 .436 .499 .572 .311 .221 .342 .495 - - - -

HypER [Balažević et al., 2019a] .465 .436 .477 .522 .341 .252 .376 .520 .533 .455 .580 .678

DistMult [Dettmers et al., 2018] .430 .390 .440 .490 .240 .160 .260 .420 .340 .240 .380 .540

ConvE [Dettmers et al., 2018] .430 .400 .440 .520 .335 .237 .356 .501 .440 .350 .490 .620

ComplEx [Dettmers et al., 2018] .440 .410 .460 .510 .247 .158 .275 .428 .360 .260 .400 .550

REFE [Chami et al., 2020] .455 .419 .470 .521 .302 .216 .330 .474 .370 .289 .403 .527

ROTE [Chami et al., 2020] .463 .426 .477 .529 .307 .220 .337 .482 .381 .295 .417 .548

ATTE [Chami et al., 2020] .456 .419 .471 .526 .311 .223 .339 .488 .374 .290 .410 .538

ComplEx-N3 [Chami et al., 2020] .420 .390 .420 .460 .294 .211 .322 .463 .336 .259 .367 .484

MuRE [Chami et al., 2020] .458 .421 .471 .525 .313 .226 .340 .489 .283 .187 .317 .478

RotatE [Sun et al., 2019] .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670

QMult [Demir et al., 2021a] .438 .393 .449 .537 .346 .252 .383 .535 .555 .475 .602 .698

OMult [Demir et al., 2021a] .449 .406 .467 .539 .347 .253 .383 .534 .543 .461 .592 .692

ConvQ [Demir et al., 2021a] .457 .424 .470 .525 .343 .251 .376 .528 .539 .459 .587 .687

ConvO [Demir et al., 2021a] .458 .427 .473 .521 .366 .271 .403 .543 .489 .395 .546 .664

ConEx [Demir and Ngomo, 2021] .481 .448 .493 .550 .366 .271 .403 .555 .552 .474 .601 .696

QMult † .473 .427 .491 .566 .382 .285 .421 .576 .576 .490 .631 .728

OMult † .484 .444 .504 .563 .381 .284 .418 .576 .563 .480 .612 .716

ConvQ † .474 .442 .486 .535 .375 .280 .409 .568 .497 .403 .553 .672

ConvO † .471 .441 .484 .529 .398 .301 .437 .592 .545 .463 .594 .694

ConEx † .491 .457 .504 .561 .398 .301 .437 .595 .565 .484 .613 .709

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Discussion. In Table 2, we did not report link prediction results with ElasticReg as our initial
experiments show that ElasticReg often detriment link prediction results of approaches. The inferior
performance may stem from the fact that embeddings learned via ElasticReg may not be tailored to
tackle the link prediction. Another possible explanation may be that we did not optimize hyperpa-
rameters of models for ElasticReg. In our future work, we plan to incorporate the domain and range
information of relations in the cross entropy loss function.

6.2 Scalability

We have successfully used the DAIKIRI-Embedding framework to learn DBpedia embeddings for over
100 million entities (see Table 1). We made the pre-trained ConEx embedding of DBpedia publicly
available on the HOBBIT platform 7. During this computation, we used all 32 CPUs in the train-
ing phase as well as in the preprocessing phase. Training 1.1 billions of parameters took only few
days. Currently, we are working using these embeddings in many different applications including
fact-checking.

7 Conclusion

In this work, we introduced a technique that constrains predictions of knowledge graph embedding
models by means of incorporating the domain and range information of relations. Our results indicate
that generalization performances of many knowledge graph embedding models are increased on all
benchmark datasets without requiring any extra computation. Hence, the proposed technique can
be readily applied on pre-trained models. Moreover, we show that DAIKIRI-Embedding can be easily
used to scale on large knowledge graphs. In future we will work on investigating introducing constraints
in the loss function of knowledge graph embedding models.
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