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Executive Summary

When constructing knowledge graphs, e.g., for web search or industrial applications, an important task
is to create the type hierarchy of entities. In this paper, we propose a fully unsupervised approach
without requiring any training data. Our approach clusters entities by means of their embeddings in
order to derive their types. One particular challenge is the high-dimensionality of embedding spaces:
as the number of dimensions increases, many clustering algorithms suffer from the curse of dimension-
ality causing a degradation of clustering performance and rendering distance measures meaningless. To
this end, we experiment with different embedding and clustering approaches and evaluate them both
in terms of predictive performance and runtime performance, comparing them to unsupervised and
supervised baselines. Our results show that unsupervised embedding-based approaches can reasonably
predict the types with F1-measures up to 0.634 and 0.751 on the FB15k-237 and WN18RR bench-
marking datasets respectively. As expected, unsupervised approaches could not reach the performance
of fully-supervised approaches, raising the need to explore semi-supervised approaches requiring only
small amounts of training data.
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1 Introduction

In recent years, it has become a common practice to compute embeddings for various tasks—word
embeddings for natural language processing, image embeddings for object/face recognition, and entity
embeddings for knowledge graphs (KGs) completion and node classification. In the absence of labeled
training data, clustering approaches allow, e.g., to identify similar nodes in knowledge graphs. However,
to the best of our knowledge, knowledge graph embeddings have not been used for prediction yet.

Typical embedding dimensions for knowledge graphs go up to 512 Ruffinelli et al. [2020] and
real-world datasets such as Wikidata and YAGO, contain over 100 million entities. Such large embed-
ding dimensions and dataset sizes pose significant scalability challenges for traditional clustering algo-
rithms such as centroid-based, hierarchical, or density-based clustering. Potential solutions that have
been proposed for large-scale high-dimensional data are HDBSCAN Campello et al. [2013] and NG-
DBSCAN Lulli et al. [2016] as well ask-means++Arthur and Vassilvitskii [2007] and k-means||Bahmani
et al. [2012]. However, in high-dimensional data, traditional similarity measures (e.g. Euclidean dis-
tance), as used in conventional clustering algorithms, are usually not meaningful Kriegel et al. [2009].
This problem is known to be the curse of dimensionality and related phenomena require adaptations
of clustering approaches to the nature of high-dimensional data. Moreover, clustering approaches have
been hardly evaluated on entity embeddings and for the task of type prediction. The main challenge
is the absence of information about entity types—an optimal clustering approach should allocate enti-
ties with the same types together in an unsupervised learning manner. Hence, entity representations
(embeddings) play a major role in an efficient clustering process. Recently, embedding-based repre-
sentation has been employed effectively in various tasks where entities with similar proprieties are
embedded together into a semantic embedding space.

In this paper, we leverage clustering approaches on high-dimensional knowledge graph embeddings
to predict entity types. Our research goals are (1) to analyze the impact of different embedding
representations on the performance of type prediction, (2) to compare different clustering approaches
for this task, and (3) to evaluate their scalability. To this end, we performed several experiments: Based
on standard benchmarking datasets for knowledge graph completion, e.g., FB15k-237 and WN18RR,
we experimented with the embedding approaches RotatE, TransE, and DistMult and the clustering
approaches HDBSCAN, agglomerative clustering, and k-means. As a baseline, we employ both random
clusterings and supervised approaches, and we evaluate our approach in terms of accuracy, cluster
purity as well as weighted macro-averaged recall, precision, and F1-measure. Our results show that
the best embedding and clustering approach depends on the dataset—with k-means, HDBSCAN on
top of TransE and DistMult, often producing good results while agglomerative clustering and RotatE
seem to be less suitable for the task.

The remainder of this paper is organizing as follows: In Section 2, we discuss state-of-the-art
clustering methods addressing the challenges of clustering high-dimensional data. Section 3 describes
the full pipeline of our approach to benchmark clustering approaches in entity type prediction. In
Section 4, we describe our experiments on two different datasets and discuss the performance results
of baselines. Section6 concludes the paper and shows the current challenges in high-dimensional data
for future work.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2 Related Work

2.1 Clustering of High-Dimensional Data

Kriegel et al. [2009] and Parsons et al. [2004] survey clustering approaches for high-dimensional data.
In high dimensions, similarity measures such as Euclidean distance often become meaningless since the
relative distance between the closest and farthest points converges to 0. Moreover, with increasing di-
mensions, there are often many irrelevant features representing distracting “noise”. A common approach
to overcome the issues of high-dimensional data is to perform feature selection or dimensionality reduc-
tion, e.g., with PCA. However, these operations are performed globally, whereas different features and
different information are often required for different clusters. To overcome this problem, approaches
for subspace clustering, pattern-based clustering, and correlation clustering have been proposed—each
with their own assumptions on the underlying data. In our case of clustering neural embeddings, we
cannot assume axis-parallel subspaces or pattern-based subspaces but must assume arbitrarily-oriented
clusters. Hence, correlation-based clustering approaches appear particularly promising. While most of
them rely on PCA with runtime cubic in the number of dimensions, ORCLUSAggarwal and Yu [2000]
is a reasonably fast k-means-like algorithm and 4CBöhm et al. [2004] is a reasonably fast density-based
algorithm that does not require the number of clusters in advance.

Esmin et al. [2015] review particle swarm optimization (PSO) algorithms for clustering high-
dimensional data. They discuss the shortcomings of conventional algorithms such as their slowness
of convergence, sensitivity to initialization values (e.g., K-means), and manual effort required, e.g.,
for hyper-parameter optimization. The authors survey particle swarm optimization algorithms to
overcome some of the challenges. PSO explores the search space by means of interacting particles
moving towards good solutions. While PSO requires few parameters to adjust, its convergence speed is
slow near the global optimum when the search space is large and complex. Hence, PSO is a promising
direction of future research, but it is not guaranteed to outperform conventional algorithms yet.

2.2 Clustering of Large Datasets

Besides a large number of dimensions, another challenge often encountered in practice are large datasets
with millions if not billions of data points. Simple clustering approaches often taught in textbooks such
as K-means or DBSCAN hardly scale to these sizes and a number of approaches have been proposed to
improve their scalability. Centroid-based clustering approaches like k-means start by picking k points
as cluster centroids and iteratively assigning the closest point to their respective clusters and updating
the cluster centroids. Their scalability can be significantly improved by the initialization procedure of
the k initial points, such as is done by k-mean++Arthur and Vassilvitskii [2007] and k-means||Bahmani
et al. [2012].

Density-based approaches like DBSCAN group instances are located close to each other but far
away from other clusters. By operating solely based on density, these algorithms can even clus-
ter non-convex shapes. Scalable variants hierarchically decompose the space (HDBSCAN Campello
et al. [2013]), efficiently approximate the densities (NG-DBSCAN Lulli et al. [2016]), employ reverse
nearest neighbor counts (RNN-DBSCANBryant and Cios [2018]), or randomly partition the data (RP-
DBSCAN Song and Lee [2018]).

Spectral clustering approaches use the Eigenvalues of the similarity/adjacency matrices. An ef-
ficient approximation approach was, for example, proposed by Yan et al. [2009]. Besides algorith-
mic advances, technical solutions increasingly employ the map-reduce paradigm to improve scalabil-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ity Cordeiro et al. [2011], Pandove et al. [2018]. Challenges in this direction include splitting data
across machines, communication costs across machines, and merging solutions while maintaining a
competitive clustering performance.

2.3 Clustering in Knowledge Graph

2.3.1 Clustering of Knowledge Graph Entities

Discovering Types in RDF Datasets: Kellou-Menouer and Kedad [2015] presented a clustering-based
approach to discover entity types in linked data (e.g., RDF). The proposed approach employed a
density-based clustering to group entities with similar types together into one cluster. Jaccard metric
is used to measure the similarity between two entities. To speed-up the clustering process, they run
the clustering algorithm once and assign types to new data as the nearest neighbors. Christodoulou
et al. [2015] proposed a similar approach for structural inference in Linked data using clustering. They
introduced an automatic approach to derive structural summary linked data as RDF triples. Then,
they employed a hierarchical-based clustering algorithm to organize the data into clusters and then
infer a structural summary. The experimental results of structural summaries are expressed in the
form of classes, properties and relationships, and good performance in different types of linked data
sources.

2.3.2 Entity Embedding for Type Prediction

Demir and Ngonga Ngomo [2019] proposed a scalable approach for knowledge graph embedding
(dubbed PYKE) that combines a physical model based on Hooke’s law Rychlewski [1984] and its
inverse with ideas from simulated annealing to compute the embeddings for knowledge graphs effi-
ciently. The experimental results demonstrated PYKE achieves a linear space complexity— PYKE is
more than 22 times faster than existing embedding solutions in the best case and can scale-up to a
knowledge graph containing millions of triples.

2.3.3 Hierarchical Type Prediction (without embeddings/clustering).

Paulheim and Bizer [2013] addressed the problem of type prediction in noisy and incomplete knowledge
bases. They proposed a heuristic link-based approach for entity type completion (dubbed SDType).
The basic idea is to use each link from and to an instance as an indicator for the resource’s type. For
each link, they use the statistical distribution (hence the name SDType) of types in the subject and
object position of the property for predicting the instance’s types.

Similar work was also carried out by Melo et al. [2017] where they formulate the problem of type
prediction as a hierarchical multi-classification task. The authors exploited different features (including
entity embeddings) to learn node representation and predict their types.

2.3.4 Ontology Learning

Learning ontology from relational databases: Li et al. [2005] reviewed different techniques to evalu-
ate ontology learning. Depending on the ontology types and the purpose of evaluation, the authors
summarize the most common approaches that fall into one of the categories such as 1) comparing the
ontology to a “golden standard", 2) Usage of ontology in applications and evaluate the results. 3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1.Data Preprocessing 2. Knowledge Graph 
Embedding 3. Clustering Approach 4. Type Prediction 

& Evaluation

Figure 1: The Pipeline of our proposed approach.

human-based evaluation with a set of predefined criteria. A survey of ontology evaluation techniques:
Brank et al. [2005] proposed an approach that can automatically learn OWL ontology from a relational
database by a set of learning rules. The approach can obtain OWL ontologies like classes, properties,
properties, characteristics, cardinality, and instances.

3 Methodology

The problem of type prediction in KGs requires scalable approaches that can handle high-dimensional
representations of entities and their relations. In this section, we describe our proposed approach based
on four main-folds as depicted in Figure 1. In the following subsections, we first define the task of
entity prediction, then we describe the details of each module in our approach.

3.1 Task Definition:

Let V = (E ,R) be a knowledge graph of linked data where E = (e1, e2, . . . en) are entities and R
represents their relations. E are commonly organized using a set of types T = (t1, t2, . . . , tk) (e.g.,
persons, countries, vehicles). Entity typing is the task of assigning a type t to an entity e and is
a fundamental task in KG completion. In this paper, we aim to predict T , given unlabeled data
(i.e., an unsupervised learning scenario). We assume an input data is in the form of RDF triples, a
single instance is formulated as (es, rt, eo), where es and eo denote the subject and object entities.
Our approach aims to predict eo— i.e., the type of subject entity es, given type relation rt(e.g.,
rdf:type). For example, the triple <dbr:Albert Einstein, rdf:type, dbo:Scientist> states that
Albert Einstein (es) is of type type (rt) Scientist (eo).

3.2 Data Preprocessing:

The first step in our approach is to load the input data and generate its knowledge graph representation
in RDF format. This is an essential step to formulate the data for the next step, where we train the
embedding model to learn the representation of entities and their relationships. Tabular data might
be converted with Vectograph, 1 an open-source library to convert tabular data into RDF.

3.3 Knowledge Graph Embedding

This step aims to learn the representation of entities and their relations in a knowledge graph. To
capture entities’ latent semantics, we employed a KG embedding where entities and relations are
represented as low-dimensional vectors. Moreover, entities with similar properties are then embedded
close to each other in the embedding space. Recently, several KGs embedding methods have been
1 https://github.com/dice-group/Vectograph

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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proposed to generate vector representations for entities and their relationships. We used the GraphVite
library to train KGs models (TransE, RotatE, and DistMult) on the Freebase and WordNet datasets
for benchmarking our experiments. The model’s hyper-parameters are tuned to achieve the best
performance. In particular, we used a batch size of 2, 000 triples and train the models for 1, 000
epochs. We use the Adam optimizer with learning rate 2 · 10−6. Finally, entities’ vectors are generated
to be clustered in the next step. Each vector represents the entity’s features in 256 dimensions.

3.4 Entity Clustering

In this step, we aim to cluster entities, a good clustering method will produce high-quality clusters
with high intra-class (i.e, the distance between clusters) similarity and low inter-class (i.e, the distance
between entities in the same cluster). In our approach, we employ a density-based clustering approach
(HDBSCAN) to cluster entity vectors into groups. HDBSCAN requires two inputs parameters: ε is a
radius within identity how many neighbor points and minPoint is the minimum number of neighbor
points to consider a core point. We used cosine similarity as a distance metric to compute nearest
entities. Each entity is assigned to a cluster based on its nearest core points. HDBSCAN outputs k
clusters of entities, including anomalies entities (which do not belong to any cluster).

3.5 Entity Typing

Finally, we inference types of entities based on the previously computed clusters. We propagate the
major type t? to all entities in a cluster C. To this end, our approach clusters similar entities w.r.t
their types, where each cluster will have a single type of entities.

4 Experimental Evaluation

We conducted several experiments to verify the effectiveness of our approach on two benchmark datasets
for entity typing. Our goal is to answer the following research questions:

Q.1. Which embedding approach yields the best clusters of entity types?

Q.2. What clustering approach yields the best clusters of entity types?

Q.3. How scalable are the clustering algorithms both in terms of number of embedding dimensions
and number of samples?

4.1 Evaluation Setup

4.1.1 Datasets

We employ two labeled datasets:

4.1.1.1 FB15k-237

Toutanova et al. [2015] compiled the dataset to benchmark the embedding performance of type and
link prediction tasks. It includes a subset of the Freebase Knowledge Graph with 14,951 entities

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1: Dataset statistics.

Dataset Entities Relations Triples Dim. Types

FB15k-237 14,541 237 310,116 512 6

WN18RR 40,559 11 93,003 256 5

and 237 relations. Each triple t = (es, r, eo) describes a relation r between subject entity es and
object entity eo, for example, “Mira Nair” (/m/0kvsb) “has profession” (/people/person/profession)
“Professor” (/m/01d30f). We obtain the type of subjects via the property hierarchy, e.g., “Mira Nair”
has type “people”. If an entity has more than one type, we employ the most frequent one, in the same
way as Toutanova and Chen [2015]. Similarly, we consider the types “education”, “film”, “location”,
“music”, and “soccer”. Our filtered and labeled version of the dataset has 7,891 entities and 6 ontology
types (i.e, entity class).

4.1.1.2 WN18RR

This dataset includes a subset of WordNet Dettmers et al. [2017], which contains lexical information of
the English language. The dataset contains 93,003 triples with 40,943 entities and 11 relations. Each
triple represents the semantic relation between words (e.g, hyponym, hypernym, or antonymy). For
example, a triple dog.n.01 hypernym canine.n.02 models the hypernym relation between the two
entities “dog” and “canine”. For our experiments, we obtain the types transitively via the hypernym
relation and consider the top-level types “animal”, “communication”, “food”, “person”, and “plant”. For
example, both “dog” and “canine” would be of type “animal”. Our filtered and labeled version of the
dataset has 15,583 entities and 5 ontology types.

4.1.2 Baselines

We investigated different baselines (both unsupervised and supervised) to evaluate the performance
of entity typing. Regarding the former, we considered centroid-based, hierarchical, and density-based
clustering algorithms (k-means, agglomerative clustering, and HDBSCAN). For comparison, to get an
idea of the maximal achievable performance, we also explored supervised baselines such as logistic
regression, K-nearest neighbors, and random forest.

4.1.3 Evaluation Metrics

We assess the clustering quality based on accuracy and purity criteria, i.e, good clusters should have
one single type of entities. Moreover, we employ precision, recall, and F1-score to reflect the imbalanced
nature of our datasets. Once the clusters have been computed, an oracle assigns the correct label, i.e.,
a type to a cluster. While in practice, the oracle, might be a human annotator, we employ a majority
vote for our experiments.

4.1.3.1 Accuracy & Cluster Purity

Accuracy measures the fractions of entities assigned to the correct cluster (majority type within the
cluster). Cluster purity evaluates the cluster homogeneity—i.e, the degree to which a cluster contains
members from a single class (a fraction of samples belong to the cluster’s majority)—and each cluster
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is weighted according to its samples. In our setting of employing clustering for type prediction (with
a majority vote oracle), cluster purity (before majority vote) and accuracy (after majority vote) are
equal.

4.1.3.2 Precision, Recall, and F1-Score

Moreover, we report weighted macro-averaged precision, recall, and F1-scores: The scores are computed
for each class (i.e., type in our case) and weighted according to the number of samples in this class.

4.1.4 Reproducibility

We provide an open-source implementation of our experiments along with a description of our input
data and required libraries2. For training the embeddings models rotateE, transE, and distMult on the
datasets FB15k-237 and WN18RR, we used the GraphVite3. Our experiments were run on a server
with 16 processors (Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz) and 126 GB of memory.

4.2 Embedding Algorithms

Targetting the question what embedding algorithm works best for entity type prediction (Q.1), we
experiment with three state-of-the-art KGs embedding TransE, DistMult, and RotatE. Tables (2,3)
report the performance results on each embedding approach in terms of accuracy (Acc.), precision
(Pre.), recall (Rec.), F1-score (F1) and cluster purity (Purity). The table shows that the embedding
approach has a substantial impact on the clustering performance. For example, in Table 2, HDBSCAN
achieves an F1-score 62% with TransE compared to 11% with RotatE. We hypothesize that this
performance margin is related to the way each model allocates similar entities together—i.e., how each
model computes the similarity between entities. Further details are discussed in Section 5.0.0.1.

4.3 Clustering Algorithms

Asking ourselves which clustering algorithm would be most suitable (Q.2), we experiment with K-
means, agglomerative clustering, and HDBSCAN. Table 2 shows that K-means achieves the best F1-
measure (0.751) with TransE embeddings on the FB15-237 dataset. On the WN18RR dataset, HDB-
SCAN achieves the best F1-measure (0.634) with DistMult embeddings. Furthermore, we observed
that K-means and Agglomerative approaches achieved very close performance in entity typing—with
K-means slightly outperforming agglomerative clustering (+0.01 and +0.05 on FB15-237 and WN1855
respectively). While both K-means and HDBSCAN achieved good performance for unsupervised entity
typing in our experiments, we observed HDBSCAN be a more robust and stable approach compared to
K-means. K-means’s performance varies with its initialization and requires the number of clusters as
a hyper-parameter. In particular, we measure the stability of algorithms across different runs. HDB-
SCAN’s has stable F1-scores with no variance, while for example, K-means showed standard deviation
in it’s F1-scores by 0.13% on FB15-237 dataset.

To visualize the clustering behavior, we projected embeddings including the clustering results
using T-SNE projection (Figures ??, 4c, 4d). The figures show that the embedding approach has a
big impact on the distribution of samples in the embedding space. For example, the distance between
2 https://github.com/dice-group/DAIKIRI-Clustering
3 https://graphvite.io/
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Table 2: Performance Results of Clustering Algorithms on Datasets: Freebase 15k-237. Best results in
bold. ♠ refers to random clustering with equal probability. and ♣ for random clustering with custom
probability based on type distribution in the dataset.

Algorithms FB15k Dataset with Different Embeddings

FB15k-TransE FB15k-DistMult FB15k-RotatE

Acc. Pre. Rec. F1 PurityAcc. Pre. Rec. F1 PurityAcc. Pre. Rec. F1 Purity

RandomClustering[♠] 0.281 0.154 0.281 0.194 0.281 0.287 0.158 0.287 0.203 0.287 0.282 0.155 0.282 0.176 0.282

RandomClustering[♣] 0.285 0.157 0.285 0.199 0.285 0.280 0.154 0.280 0.198 0.280 0.280 0.154 0.280 0.198 0.280

Logistic Regression 0.900 0.908 0.900 0.900 0.900 0.905 0.907 0.905 0.905 0.905 0.266 0.217 0.266 0.208 0.283

Knn 0.874 0.874 0.874 0.873 0.874 0.802 0.835 0.802 0.798 0.802 0.232 0.182 0.232 0.172 0.282

RandomForest 0.901 0.915 0.901 0.901 0.901 0.908 0.919 0.908 0.908 0.908 0.314 0.238 0.314 0.253 0.315

K-Means 0.784 0.753 0.784 0.751 0.784 0.771 0.750 0.771 0.741 0.771 0.282 0.200 0.282 0.200 0.282

Agglomerative 0.779 0.749 0.779 0.746 0.779 0.781 0.752 0.781 0.749 0.781 0.284 0.156 0.284 0.201 0.284

HDBSCAN 0.678 0.617 0.678 0.624 0.678 0.475 0.321 0.475 0.362 0.475 0.276 0.076 0.276 0.119 0.276

Table 3: Performance Results of Clustering Algorithms on WN18RR Dataset. Best results in bold. ♠
refers to random clustering with equal probability. and♣ for random clustering with custom probability
based on type distribution in the dataset.

Algorithms WN18RR Dataset with Different Embeddings

WN18RR-TransE WN18RR-DistMult WN18RR-RotatE

Acc. Pre. Rec. F1 PurityAcc. Pre. Rec. F1 PurityAcc. Pre. Rec. F1 Purity

RandomClustering[♠] 0.274 0.075 0.274 0.117 0.274 0.274 0.075 0.274 0.117 0.274 0.274 0.075 0.274 0.117 0.274

RandomClustering[♣] 0.274 0.146 0.274 0.137 0.274 0.274 0.075 0.274 0.117 0.274 0.274 0.144 0.274 0.172 0.276

Logistic Regression 0.766 0.772 0.766 0.758 0.766 0.818 0.814 0.818 0.816 0.818 0.853 0.854 0.853 0.851 0.853

Knn 0.936 0.936 0.936 0.936 0.936 0.943 0.943 0.943 0.943 0.943 0.938 0.938 0.938 0.938 0.938

RandomForest 0.824 0.833 0.824 0.811 0.824 0.878 0.889 0.878 0.874 0.878 0.927 0.930 0.927 0.924 0.927

K-Means 0.546 0.497 0.546 0.474 0.546 0.568 0.575 0.568 0.513 0.568 0.594 0.592 0.594 0.547 0.594

Agglomerative 0.510 0.690 0.510 0.428 0.510 0.526 0.581 0.526 0.451 0.526 0.569 0.555 0.569 0.514 0.569

HDBSCAN 0.592 0.564 0.592 0.539 0.592 0.609 0.719 0.609 0.634 0.609 0.617 0.719 0.617 0.620 0.617

clusters is much large for TransE embeddings compared to RotatE embeddings on the FB15k-237
dataset.

4.4 Scalability

Analyzing the runtime of entity typing approaches (Q.3), we measure the runtimes to cluster the entities
based on precomputed embeddings. It is apparent from Figure 2a that HDBSCAN has the most stable
runtimes with different embeddings, while the runtime of other clustering approaches heavily depends
on the kind of embeddings. On average, HDBSCAN achieves the best runtime performance on the
FB15K-237 dataset.
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Table 4: Performance Results of Clustering Algorithms on AI4BD Smart Logistics Dataset. Best
results in bold.

AI4BD Smart Logistics-TransE

Algorithms Acc. Pre. Rec. F1 Purity

RandomClustering 0.501 0.501 0.501 0.501 0.501

Logistic Regression 0.576 0.577 0.57 0.576 0.576

Knn 0.749 0.749 0.749 0.749 0.749

RandomForest 0.683 0.690 0.683 0.680 0.683

K-Means 0.576 0.577 0.576 0.577 0.576

Agglomerative 0.576 0.576 0.576 0.575 0.576

HDBSCAN 0.611 0.582 0.611 0.597 0.577
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(a) FB15k-237 Dataset.
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(b) WN18RR Dataset.

Figure 2: Runtime (seconds) Comparison of Entity Typing.

Similarly, Figure 2b compares the runtime performance on the WN18RR dataset. The overall re-
sults show that HDBSCAN approach has the best runtime performance compared to other approaches.
Interestingly, we observed that agglomerative clustering took consistent runtime, however, HDBSCAN
was faster by −10% than agglomerative clustering. Overall, these results suggest that HDBSCAN is
a good choice for clustering high-dimensional data. It can compromise trade-off performance properly
between accuracy and runtime metrics.

5 Discussion

5.0.0.1 Scoring function of embedding approaches

Score function in KGs has a significant impact on the quality of learned embeddings. They are
used to train the KG models so that the entities connected by relations are close to each other.
In our experiments, we trained the KGs models: TransE, DistMult, and RotatE to learn embedding
representation for entities and relations. Each model uses a different score function which learns the
embedding in a different way. We aim to answer Q.1 to find which embedding representation yields
better in entity typing tasks. TransE model employs a distance-based scoring function which scores
entities using distances in the embedding space, while DistMult uses a multiplicative approach.

We observed that transitional-based models (TransE ) achieved outperforming scores when using
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the same score function during embedding as in the clustering method. For example, HDBSCAN
with cosine similarity as a distance function achieved F1 scores with TransE embedding with score
function? compared to HDBSCAN with Euclidean distance. Hence, we demonstrate the impact of the
score function on the learned embeddings w.r.t the task which will be applied. Few studies Zhang et al.
[2019], Gao et al. [2019] highlighted this research gap with computed KGs embedding in a data-driven
or task-driven way rather than generally learned embeddings.

5.0.0.2 Clustering approaches without embeddings

We will perform an ablation study to testify the influence of entity representation with/without KG
embedding on clustering performance. In particular, we will conduct our experiments without entity
embeddings, we will explore traditional features representation (e.g, one-hot encoding or entity’s pro-
prieties as bag-of-words) to benchmark the extent-to-which entity embeddings affect the performance
of clustering and entity typing task.

5.0.0.3 Future work: semi-supervised type prediction

Unsupervised approaches showed promising results in predicting entity types without label data; the
best performance achieved with 0.63 and 0.75 on FB15k-237 and WN18RR. On the other hand, super-
vised approaches showed very good performance (up to 0.90 and 0.94 on FB15k-237 and WN18RR),
these approaches require a labeled dataset which is expensive either in labeling the training data by
crowd-sourcing workers and time-consuming. In our further experiments, we will extend our approach
to handle these challenges using semi-supervised approaches. At first, we will employ an unsupervised
clustering method to group similar entities together into K clusters; then we will identify the top M
entities as a cluster representation to be labeled by human experiments. The top-M entities can be
chosen based on their distances to the cluster centroid. Finally, human experts will label (i.e, assign
each entity an ontology type) the selected entities from each cluster, the final dataset contains K x
M label entities. Finally, we will train a supervised classifier (e.g KNN) using our final dataset and
predict the types of unlabelled entities.

6 Conclusion

Scalability and high dimensionality are two common problems associated with document clustering.
In this paper, we present a clustering-based approach to predict entity types in KGS. Our approach
comprises of four steps: 1) loading and generating KG; 2) KGs Embeddings; 3) Clustering; 4) Type
Prediction. Our experimental results showed that leveraging density-based clustering with KGs em-
beddings representation improved significantly the performance of type predictions without training
data. Moreover, our approach showed scalable and robust clustering performance on two benchmark
datasets. In our future work, we will extend our experiments and benchmarks on industrial datasets
as well. Moreover, we will investigate task adaptation for KGs embeddings in clustering problems.
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(a) (b) (c) (d)

Figure 3: T-SNE Visualization of FB15k TransE Embedding. Unsupervised Baselines: (a) HDBSCAN;
(b) K-means; (c) Agglomerative.

(a) (b) (c) (d)

Figure 4: T-SNE Visualization of FB15k DistMult Embedding. Unsupervised Baselines: (a) HDB-
SCAN; (b) Kmeans; (c) Agglomerative.

(a) (b) (c) (d)

Figure 5: T-SNE Visualization of FB15k RotatE Embedding. Unsupervised Baselines: (a) HDBSCAN;
(b) Kmeans; (c) Agglomerative.

(a) (b) (c) (d)

Figure 6: T-SNE Visualization of WordNet TransE Embedding. Unsupervised Baselines: (a) HDB-
SCAN; (b) K-means; (c) Agglomerative.
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(a) (b) (c) (d)

Figure 7: T-SNE Visualization of WordNet DistMult Embedding. Unsupervised Baselines: (a) HDB-
SCAN; (b) Kmeans; (c) Agglomerative.

(a) (b) (c) (d)

Figure 8: T-SNE Visualization of WordNet RotatE Embedding. Unsupervised Baselines: (a) HDB-
SCAN; (b) Kmeans; (c) Agglomerative.
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