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1 Introduction

Today, tabular data is the most common data type used in several applications, including medicine,
finance, manufacturing, climate science, and many other applications that are based on relational
databases. This data is commonly represented in tabular format –comprising samples (rows) with the
same set of features (columns)–, but lacks semantic information. As a result, it becomes challenging
to understand the meaning of the data and integrate it with other resources. On the other hand,
representing the data as linked open data—a.k.a semantification [Furth and Baumeister, 2013]—is
crucial for integration of different data sources (e.g., entities linking) and explainable predictive tasks
(e.g., anomaly detection). This process is often performed by means of numerous hand-crafted scripts
and requiring expensive maintenance by IT service providers. Recently, embedding-based methods
have demonstrated significant performances in several applications, for example word embeddings for
natural language processing, image embeddings for object/face recognition, and entity embeddings for
knowledge graphs (KGs) completion and node classification. In our deliverable 3.1, we have employed a
knowledge graph embedding (KGE) and density-based clustering to identify similar entities and group
them together into the same cluster. For example, Figure 1 shows how similar entities from FB15k-237
dataset are clustered together based on their representation from KG embedding.

Clustering approaches allow identifying data instances with similar characteristics, such as types
of information, etc. Due to the lack of labelled data, their performances in inferring data types
(labelling) are not as noteworthy as those of supervised approaches. Most existing approaches have
shown successful application of cluster labelling to learn ontologies from textual data. Despite this,
few studies addressed the challenges of labelling linked data (e.g., in RDF format <subject, predicate,
object>) to learn ontologies, i.e., types information of <subject> [Zhao et al., 2020]. Although, these
clustered entities are lacking information types and require additional labelling process. It may be
possible to explore all entity properties and manually assign types. Nevertheless, this manual labelling
task is a time-consuming and costly, which requires hiring many domain experts. To address this
challenges, we propose two approaches: our first approach annotates a small subset of data (e.g.,
100 data samples) by employing a human expert. After that, we propagate the major type from
annotated entities to other entities within the same cluster. Toward this goal, we developed a web
application that presents a set of sampled entities from each cluster to a human expert for annotation.

Figure 1: t-SNE plot of clustering entities based on their embedding representations in FB15k-237.
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Our application shows entity properties (e.g., RDF triples) in a web interface and allows users to add
types information (more details in Section 4.1). On the other hand, our second approach employs
semi-supervised learning for labelling entities in the embedding spaces, i.e, entity typing task. In
particular, our approach follows a teacher-student learning paradigm which employs learning from
both massive unlabelled data and small labelled data [Zahera et al., 2021]. To verify the effectiveness
of our approach, we conducted a set of experiments on two benchmark datasets for entity labelling
tasks: FB15k-ET and YAGO43k-ET [Zhao et al., 2020]. Our experimental results demonstrate that
our approach outperforms the state-of-the-art baselines in inferring entities types with a small labelled
data.

The remainder of this report is organizing as follows: In Section 2, we discuss state-of-the-art
techniques in labelling clusters, including textual and linked data. Section 3 presents the dataset used
in our experiments, and Section 4 describes the details of our proposed approaches. In Section 5, we
describe our approach for generating axioms for the annotated entities. Finally, Section 7 concludes
the main findings in this report and shows the current challenges in high-dimensional data for future
work.

2 Related Work

Cluster Labeling. data annotation brings benefits for users to analyse and understand the semantic
structure. Last years, different approaches have been proposed for labelling textual data. Statistical
approaches such as topic modelling (e.g., LDA) and word importance (e.g., TF-IDF) have been lever-
aged to extract labels from an input text, i.e., extractive labelling. However, these approaches fail to
capture the semantics of linked data, where data are represented as RDF triples (subject, predicate,
object). [Carmel et al., 2009] proposed enhancing data labelling using Wikipedia information. In
particular, their approach extracts a set of candidate labels from Wikipedia in addition to important
terms from input text. Aker et al. [2016] proposed a graph-based approach for labelling users comments
on an online news platform. By means of graph modelling, the proposed approach demonstrated a
significant performance in labelling comments using DBpedia concepts. Similarly, Hulpus et al. [2013]
extracted most frequent words from text and link with DBpedia concepts. By using a graph centrality
measure, the proposed approach identified efficiently the DBpedia concepts that best label topics in a
document. Ajwani et al. [2018] proposed a multimodel framework based on a small set of features and
Wikipedia taxonomies for labelling unstructured contents (text and image) with a small set of training
data. Nevertheless, these approaches demonstrated superior performance when dealing with textual
data. They are not investigated yet for labelling linked data. Moreover, processing tabular data is a
challenging task, due to the lack of semantics, including poorly defined column names, their meaning,
and their content. To the extent of our knowledge, this study is the first attempt that address learns
ontologies from tabular data based on clustering and knowledge graph embedding.

Cluster Labeling in Knowledge Graphs. Entity typing approaches in knowledge graphs can
be distinguished by their features and models: For instance, [Melo et al., 2017] employ the incoming and
outgoing relations of an entity to train a hierarchical multi-label classifier. Similarly, [Xu et al., 2016]
predict the types of Chinese entities by linking them to the English DBpedia and employing DBpedia’s
property and category information within a multi-label hierarchical classifier. [Neelakantan and Chang,
2015] employ textual descriptions of entities as features in combination with a linear classifier. While
there has been a lot of research on knowledge graph embeddings and link prediction [Wang et al., 2017],
most of the approaches focus on predicting non-type links, and they employed benchmarking datasets,
e.g., FB15k-237, WN18RR, and YAGO3-10 do not contain type information. Only [Moon et al., 2017]
and [Zhao et al., 2020] proposed approaches for embedding entities according to their types. All of
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these approaches assume many labelled training samples, which might not be available and expensive
to obtain. In contrast, we employ a semi-supervised approach, requiring only a little training data.

3 Datasets

Benchmarking Datasets for Entity Labeling In this deliverable, we experiment with two bench-
marking datasets in inferring missing types of entities in knowledge graphs. In particular, we employ
FB15k-ET and YAGO43k-ET, these datasets are enriched versions with types information from the
original dataset FB15k-237 and YAGO43k, respectively. Table 1 gives a statistical overview of each
dataset such as number of entities (#Ent.), number of relations (#Rel.), number of triples used in
training (#Train), validation (#V alid), evaluation (#Test) and number of types (#Types). We
summarize each dataset as follows:

• FB15k-ET [Zhao et al., 2020] consists of the benchmarking dataset FB15k-237 along with type
triples of the form (entity, entity type). We use the same dataset split (train-valid-test) as [Zhao
et al., 2020] to ensure the same evaluation setting. In particular, we use three subsets: train
(136,618 triples), valid (15,749 triples) and test (15,780 triples).

• Similarly, YAGO43k-ET [Zhao et al., 2020] enriches the benchmarking dataset YAGO43k with
type information, and we use the same data split: train (375,853 triples), valid (42,750 triples),
test (45,182 triples). For both datasets, we determine the k ∈ {3, 5, 10} most frequent types and
employ the subset of entities and triples induced by them for our experiments.

Smart Logistic Dataset (Use case): The use case for Smart Logistics stems from the logistics of
small parts to the production line of two different customers, vehicle, and consumer goods assembling,
each with one production line over about three years. The data contains time-based information about
taking parts out or putting new parts in boxes, so-called stock changes. In addition, it comprises
information when and how many new parts are ordered to replenish the boxes, so-called orders. The
original Smart Logistics Dataset consists of about 72,000 entities with type order and about 2.9 million
entities with type stock change.

Benmarking Dataset of SML: Lymphography dataset [Westphal et al., 2019] is one of the
benchmarking dataset for structured machine learning tasks that contains structure knowledge about
Lymphography diseases in OWL Language. We utilize the Lymphography dataset to assess the per-
formance of our approach in generating Axioms. Further details can be found in Section 5.

Table 1: Statistics of datasets: FB15k-ET and YAGO43k-ET.

FB15k-ET YAGO43k-ET

Top 3 Top 5 Top 10 Top 3 Top 5 Top 10

Relations 1,345 1,345 1,345 37 37 37

Total Type Triples 22,849 26,184 29,058 29,528 32,193 35,225

Train Type Triples 12,748 13,726 14,376 24,078 25,792 27,201

Valid Type Triples 5,038 6,200 7,321 2,689 3,170 3,997

Test Type Triples 5,063 6,258 7,361 2,761 3,231 4,027

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4 Labelling of Embedding Spaces

In the semantification process, we aim to automatically learn ontologies from tabular data. Our
semantification approach consists of four steps, as show in Figure 2. First, we preprocess the tabular
data to clean noisy and NULL values. After that, we use Vectograph library1 to transform the input
data to a knowledge graph. In the third step (c), we cluster similar data (i.e., entities) together in
the same group. In this deliverable, we propose two approaches to label the entities based on their
embedding representations and clustering outcome. In the following subsections, we describe the details
of each approach for labelling entities based on their semantic representation.

Dat a 
Preprocessing

Tabular 
dat a

e1

e4

e3 en

e2
r1 r2

r3
r4

r5

Knowlege Graph 
Embedding

Clust ering
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Ent it ies
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Ent it ies

Ent it y 
Typing

Human-in-t he-loop

O W L  
O nt o logy
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(b) (c)

(d)

(e)

RDF 
Triples

Figure 2: Semantification Pipeline, including Manual Labelling

4.1 Manual labelling (Demo)

We developed a web application (dubbed LabENT) for labelling entities manually based on their
embedding representation. To do so, we sample entities from each cluster that are close to its centroid.
Our demo presents a set of entities from the same cluster which have similar properties, including type
information. As show in Figure 3, our demo presents the entities in an HTML table with information
(entity-ID and entity triples), the user is asked to infer the entity type based on the triple’s information.
Finally, we propagate the majority type for all entities within the same cluster, as the cluster type
information.

4.2 Semi-supervised labelling

While supervised approaches for entity type prediction have been proposed, e.g., based on hand-
crafted features [Melo et al., 2017], knowledge graph embeddings [Zhao et al., 2020], and language
models [Biswas et al., 2021], they all require a substantial amount of training data which is often not
available. In contrast, unsupervised approaches based on clustering [Chen et al., 2019] do not require
a priori labelled training data, but require labelling of clusters and do not reach the same predictive
performance as supervised approaches.

In this section, we present our semi-supervised approach (dubbed ASSET)2 to overcome this
1 https://github.com/dice-group/vectograph
2 Published in the K-CAP conference, December 2021

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3: a Screenshot of LabENT demo version 1.0 for labelling entities.

challenge and to close the gap, which require only little labelled training data. Our approach leverages
unlabelled data using the teacher-student framework [van Engelen and Hoos, 2020, Lee et al., 2013]:
(i) we train a teacher model on labelled data, (ii) we use the teacher model to generate pseudo-labels on
unlabelled data, (iii) we train a student model on the combination of labelled and pseudo-labelled data.
We repeat the process by treating the student as a new teacher to re-label the unlabelled data and to
train a new student. To the best of our knowledge, our approach is the first to adapt semi-supervised
learning to the entity typing task and distils knowledge from unlabelled data to boost its performance.

4.2.1 The Teacher-Student Framework

Our semi-supervised approach is based on self-training [van Engelen and Hoos, 2020] in the teacher-
student framework. We formally describe the overall procedure in Algorithm 1. The inputs of our
approach are labelled and unlabelled datasets Dl and Du, respectively, from which we sample batches.
First, we train a teacher model T (θt) only on labelled data Dl and compute the supervised loss LDl

using the cross-entropy function in Equation (1). Then, we employ the teacher model to generate
pseudo-labels ỹi for the unlabelled data Du and we refer to the dataset along with pseudo-labels as
D̃u. The pseudo-labels ỹ(j)

i are soft labels representing the probability of type λj being assigned to an
entity ei. Second, we train the student model S(θs) on the combined dataset of labelled and unlabelled
data to minimize the combined cross-entropy loss, as illustrated in Equation (2). Finally, we iterate this
paradigm by replacing the teacher model Ti with the student model Si to generate new pseudo-labels
and train a new student Si+1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Algorithm 1: Our Teacher-Student Algorithm
Require: labeled and unlabeled datasets: Dl, Du.
Require: teacher and student models: T (θt), S(θs).

1 for num of epochs do
2 Sample batches βl from Dl = {(xi, yi)}, xi ∈ Rd;
3 Train teacher model Ti(θt) on βl;
4 Calculate LDl

by cross-entropy function on βl;

5 Use Ti(θt) to infer pseudo-labels ỹi for Du and let D̃u be the dataset Du together with
pseudo-labels;

6 for num of epochs do
7 Sample batches βl+u from Dl and D̃u;
8 Train student model Si(θs) on βl+u;
9 Calculate LDu

by a joint cross-entropy function on βl+u;

10 Replace teacher model with student model Ti+1 = Si;
11 Repeat from Step 1 until student model Si+1 has converged.;

4.2.1.1 Teacher Model.

We use a neural network with one fully-connected layer with 128 units and ReLU activations, and an
output layer with sigmoid activation. We train the teacher model for at most 100 epochs using the
Adam optimizer. The model’s hyperparameters are fine-tuned with grid search. To avoid over-fitting,
we employ early-stopping [Yao et al., 2007]. The loss function is

LDl
= − 1

N

N∑
i=1

k∑
j=1

[
y
(j)
i log

(
ŷ
(j)
i

)
+
(
1− y(j)i

)
log
(
1− ŷ(j)i

)]
(1)

where yi are the ground-truth types of ei, ŷi are the predicted types and N is the size of dataset Dl.

4.2.1.2 Student Model.

We employ a network similar to the teacher model with an additional dropout layer with rate 0.20; we
optimize the hyperparameters with grid search. We train the student model for 100 epochs on batches
of labelled and pseudo-labelled data. Each batch has 128 samples, and we employ the Adam optimizer
with early-stopping to avoid over-fitting. Our loss function is

LDu = LDl
− 1

M

M∑
i=1

k∑
j=1

[
ỹ
(j)
i log

(
ŷ
(j)
i

)
+
(
1− ỹ

(j)
i

)
log
(
1− ŷ(j)i

)]
(2)

where ỹi denote the pseudo-labels generated by the teacher model, ŷi the predicted labels by the
student model, and M is the dataset size Du.
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4.2.2 Evaluation

We conduct a set of experiments to benchmark "how effective is our semi-supervised approach compared
to state-of-the-art baselines employing the same number of labelled samples?", our evaluation on the
two benchmarking datasets FB15k-ET and YAGO43k-ET shows that given a small amount of training
data, our approach significantly outperforms supervised baselines trained on the same labelled training
data.

FB15k-ET YAGO43k-ET

Top 3 Top 5 Top 10 Top 3 Top 5 Top 10

Hloss F1 Hloss F1 Hloss F1 Hloss F1 Hloss F1 Hloss F1

Embeddings

TransE-ET 0.34 0.60 0.42 0.40 0.26 0.34 0.35 0.48 0.28 0.34 0.17 0.28

DistMult-ET 0.40 0.54 0.37 0.42 0.29 0.31 0.40 0.41 0.29 0.30 0.19 0.22

ConnectE 0.26 0.73 0.37 0.55 0.32 0.44 0.14 0.80 0.14 0.69 0.12 0.55

Supervised

Logistic Regression 0.25 0.72 0.35 0.56 0.35 0.41 0.06 0.90 0.10 0.77 0.12 0.62

RandomForest 0.26 0.72 0.34 0.57 0.26 0.46 0.09 0.76 0.11 0.60 0.08 0.46

DNN 0.26 0.73 0.34 0.56 0.29 0.44 0.09 0.80 0.11 0.66 0.08 0.61

Semi-supervised ASSET (Teacher-Student) 0.24 0.74 0.33 0.59 0.28 0.47 0.04 0.93 0.09 0.80 0.11 0.64

4.2.2.1 Result Analysis

Section 4.2.2 compares our approach both with embedding and supervised baselines on 1% of the
two datasets FB15k-ET and YAGO43k-ET with varying numbers of entity types (Top 3, Top 5, and
Top 10). We observe that—given such little training data—our semi-supervised approach ASSET
significantly outperforms each of the baselines in terms of both Hloss and F1-score with p < 0.03.3

We attribute this to our teacher-student paradigm that augments the original training dataset with
pseudo-labelled data from the unlabelled dataset, boosting overall performance (as discussed in Al-
gorithm 1). Among the embedding approaches, ConnectE significantly outperforms the other KG
embeddings TransE-ET and DistMult-ET in terms of both Hloss and F1-score. For example, differ-
ences in terms of Hloss range from -0.05 (TransE-ET, YAGO43k-ET, Top 10) to -0.26 (DistMult-ET,
YAGO43K-ET, Top 3) and differences of F1-scores range from +0.10 (TransE-ET, FB15k-ET, Top 10)
to +0.39 (DistMult-ET, YAGO43k-ET, Top 3). Our results corroborate previous findings [Zhao et al.,
2020] that ConnectE outperforms other embedding models for the entity typing task, and we employ
ConnectE embeddings as feature representation to train our supervised baselines (Logistic Regression,
RandomForest, and DNN). Among the supervised approaches, the differences are less pronounced and
the DNN achieves comparable performance to Logistic Regression and RandomForest. For example,
the DNN is at least as good as Logistic Regression in 6 out of 12 measurements and at least as good
as RandomForest in 9 out of 12 measurements.
3 For each pair of approaches, we employ a two-sided Wilcoxon signed-rank test between the Hloss/F1-scores on Top 3,

Top 5, and Top 10 of FB15k-ET and YAGO43k-ET datasets of two approaches. Our null hypothesis is that the two
approaches produce Hloss/F1-scores from the same distribution.
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4.2.3 Research Outcome

In the 11th International Conference on Knowledge Capture (K-CAP) 2021, we presented our approach
for labelling entities in knowledge graphs using semi-supervised approach (Teacher-Student Model).
Further, we demonstrated our experimental to show the effectiveness of our approach compared with
state-of-the-art baselines. In future work, we plan to employ our approach on Wikidata and help its
community to predict newly introduced types with little training data. More details can be found at
https://www.k-cap.org/2021/index.html.

5 Extraction of Axioms

An ontology is a formal set of terms (known as axioms or concepts) that are used to represent
a domain of knowledge by using description logic, such as Web Ontology Language (OWL). There
are four main aspects of an ontology: classes, properties of classes, relationships between classes, and
constraints between classes. Given classes and relationships as input from the entity labelling process
(see Step 4), we aim to generate their ontology representation and save into an OWL format. Figure 4
shows an example of input CSV file of Lymphography. The input file consists of medical information
about patients with Lymphography.

Figure 4: Lymphography Tabular Data

Our goal is to formulate this knowledge from the input file into a machine-readable format using
OWL language. To do so, first we use Vectograph library to convert the input CSV file to its cor-
responding RDF graph, where rows represent entities and columns are their relations. Then, we use
OWLready2 library4 to process the generated RDF graph and generate the OWL ontology, as shown
in 5. The following code5 shows how Vectograph and OWLready2 libraries are used to generate an
OWL ontology in Python3.
import os
from owlready2 import ∗

## f i l e Upload
OUT_FOLDER = "uploads "

i f not os . path . i s d i r (OUT_FOLDER) :
os . mkdir (OUT_FOLDER)

c l a s s AxiomGenerator :

4 https://owlready2.readthedocs.io/
5 The full source code is available at https://github.com/dice-group/LabENT

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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de f __init__( s e l f , r e ade r_f i l e 1 , r e ad e r_ f i l e 2 ) :
onto = get_ontology ( "http :// d a i k i r i −s eman t i f i c a i on . de/onto . owl" )

c l a s s e s= {}
with onto :

f o r id_ , type_ in r e ad e r_ f i l e 1 :
parent = Thing
Class = types . new_class ( type_ , ( parent , ) )
c l a s s e s [ id_]= Class

f o r ent ity_id , c l u s t e r_ id in r e ad e r_ f i l e 2 :
# as s i gn each en t i t y i t ' s c l u s t e r type
i nd i v i dua l= c l a s s e s [ c l u s t e r_ id ] ( ent i ty_id )

onto . save (OUT_FOLDER+ ' / s emant i f i c a t i on −onto logy . owl ' )

Figure 5: The generated ontology of Lymphography data

To this end, the semantification process demonstrated that ontologies can be learned automatically
from tabular data by the means of I) embedding-based clustering, II) labelling entities in the embedding
space, and III) formally describing entities and their relations using OWL 2.0. In the next step, the
learned ontology is provided as an input to the structure machine learning work package.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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5.1 Research Outcome

We propose an unsupervised approach, Tab2Onto, for learning ontologies from tabular data using
knowledge graph embeddings, clustering, and a human in the loop. We conduct a set of experiments
to investigate our approach on a benchmarking dataset from a medical domain to learn ontology of
diseases. Our Semantification approach has been accepted in the 19th Extended Semantic Conference
(ESWC) 2022. More details can be found here http://tab2onto.dice-research.org/.

6 Implementation

In this section, we provide the implementation details of semantification modules. We have imple-
mented two applications for labelling entities (LabENT and ASSET) and one application for generating
ontologies. In the following, we briefly describe the details of each application:

LabENT:

we develop a crowdsourcing application with a web interface for labelling entities based on their se-
mantic relations. As discussed in section 4.1, this application allow human expert to label entities and
propagate the types based on their embedding representation and clustering. We used the WordPress
framework6 to develop the front-end interface. In particular, we use nicepages7 module to build the
HTML pages and maintain the content of LabENT V1.0 website. For the back-end functions, we
created a MySQL database for maintaining the entities’ information (cluster-ID, entity-ID, propri-
eties, type). Once, the user assign types to the entities, the types’ information are saved back into
the MySQL database. Further, we use PHP to develop the labelling functions: I) load entities from
a MySQL database and present to a user, II) save the entity types into the database. For more in-
formation about the installation and configuration, we refer the readers to the project repository on
GitHub: www.github.com/dice-group/LabENT

ASSET:

This is our second application for labelling entities in the embedding space. We develop ASSET
application to benefit from a few labelled entities and employ them for labelling a large unla-
belled entities’ dataset. Toward this goal, we employ a teacher-student learning paradigm, a semi-
supervised learning algorithm that leverage learning from small labelled data to annotate another
large dataset. The implementation of ASSET contains two models: student and teacher, both are
developed using TensorFlow 2.0 and Python 3.6. We have released the source code of our ap-
proach and the experiments described in [Zahera et al., 2021] for research purposes. The details
about the implementation, installation, and configuration can be found on the project repository on
GitHub https://github.com/dice-group/ASSET

Axiom-Generator:

Finally, we developed the Axiom-Generator component as part of the WP3 to generate an OWL
ontology, in particular, a taxonomy of entity classes. The output file contains a formal description of
6 https://wordpress.org/
7 https://nicepage.com/
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entity types and their relationships. Using OWLready2, we created a Python script for loading entity
types and their relationships from an input CSV file. We implemented the axiom-generator script in
Python 3.7 and saved the output file in RDF format. This implementation is publicly available on the
project’s repository on GitHub at http://github.com/dice-group/Tab2Onto

7 Conclusion & Outlook

In this deliverable, we have presented two approaches for labelling entities in the embedding space.
First, we proposed a manual approach via a crowdsourcing application that allows a domain expert
to assign types for entities based on their semantic properties (e.g., RDF triples). Afterwards, our
approach propagates the major type to all entities in each cluster. To this end, our approach annotates
entities based on clustering and their embedding representation given a small labelled data. On the
other hand, we proposed a semi-supervised approach (dubbed ASSET) that employ learning from
both unlabelled data and labelled data using a teach-student model. Our approach achieved superior
performances compared with state-of-the-art baselines on two benchmarking datasets (FB15k-ET and
YAGO43k-ET). In our future work, we plan to investigate zero-shot learning approaches to learn
missing types for unseen entities in knowledge graphs.
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