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Executive Summary

We developed a rule-based system to verbalize logical axioms. The first insights and examples will
be presented in this deliverable. Furthermore, continued development on the library for Structured
Machine Learning will be presented and the preliminary results are a big improvement over the pre-
vious deliverable. The data transformation of the first use case data is another major contribution
in this document; going from single tabular data to full ontology with relational links. Generating
artificial learning problems and exporting concepts from the Structured Machine Learning library is
also presented. Finally, we come to a short conclusion.
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1 Introduction

Structured Machine Learning is one of the building blocks in Explainable Artificial Intelligence. In
this deliverable, we continue to improve our library for Structured Machine Learning that was created
in tasks 4.1 and 4.2.

In Section 2, we investigate how to transform the project’s use case data into a knowledge graph
suitable for Structured Machine Learning. Another focus point is to lay the ground for scalability
research in the library, based on the transformed data. The limitations in the expressivity supported
by our library need to be considered and possible treatments need to be implemented. This shall further
strengthen the project goal of making Machine Learning results understandable and explainable.

Notable progress in the design and implementation of the library for Structured Machine Learning
has been summarised in Section 3.

Structured machine learning can learn logical axioms. While these are easy to read for logicians,
they need to be verbalised in order to make them accessible to the domain experts. Hence, in Section 4,
we developed a library for the verbalisation of the structured machine learning results.

Section 5 presents the results of applying the algorithm to the use case data as well as verbalization
examples.

Finally, we come to a conclusion in Section 6.

2 Data Set

In the context of this project, we aim to explore the suitability of the Structured Machine Learning
approach on the “Smart Logistics” use case presented in work package 6. To that end, the use case
data first needs to be transformed into graph data suitable for structured machine learning.

Use case data for “Smart Logistics” is provided by the partners as a CSV (comma-separated
values, [Sha05]) document, including documentation. The use case data can be understood to consist
of two main classes (event types). Ordering of stock, and measurement of change in existing stock.
Furthermore, each of these event types is accompanied by various attributes such as:

Attribute Description

customer number, customer id, This meta-data identifies the owner of the smart

customer name logistics facility.

site id A per-customer unique identifier for each facility
- site.

site__number Further meta-data describing the site.

Each site contains many assortments. This value

assortment uuid . . . .
- provides a unique identifier for assortments.

These attributes contained in the source CSV
document are directly mapped into the struc-
tured data as values (data properties), without
further interpretation.

op_group_id, logistic_type,
location uuid,
customer item number

Continues on next page.
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Continuation from previous page.

Attribute

Description

supplier id,
supplier item number,

order number, order pos,

order priority, physical address,
no_of boxes, reorder quantity,
deliver _mon, deliver tue,
deliver wed, deliver thu,
deliver fri, start week,

every week, week of month

box number in_site

replenished at

old stock, new stock

type

ordering at

ordered qty, delivery qty

requesting at, shipping at,
confirmed _at, confirming _at

reorder point

positive stock change

relative class

anomalyl, anomaly2, anomaly3

These additional attributes concerning the order
are directly mapped into the structured data as
values (data properties), without further inter-
pretation.

Each assortment contains many boxes—this is a
unique number for the box.

Time stamp when this stock was replenished or
depleted.

Absolute measure of the amount of stock in this
box or site.

Types are order events or stock change events.

A time stamp recording the time when the order
was placed.

The absolute measure of the amount that was
ordered and delivered.

Further time stamps recording the time of stages
of the order process.

The absolute measure of the amount of stock at
which a new order should be placed.

Whether the change in stock was positive or neg-
ative compared to the old stock.

A categorical value describing percentage of
change comparing the old and new stock values.

Labels about whether this particular event was
an anomaly of type 1, 2, or 3, or not.

The use case data consists of approximately 3 million entries. Furthermore, it has been labelled
with three different types of “anomalies” by the partner. The goal of the Structured Machine Learning
process on the use case data shall be to find explanations describing these anomalies.
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2.1 Preprocessing of Data Sets

While modelling the data, we aim at the following principles:

e Identify the OWL Classes contained in the data, and map each source data entry to one or more
OWL Individuals (class instances).

e Identify the OWL Properties contained in the data, and create a mapping from source data to
OWL knowledge graph.

e Identify the relational links between the individuals.

These are the basic steps required to ensure the use case data can be used in structured machine
learning, however they may not be sufficient. Due to the limited expressiveness of OWL (see [Bor96|),
we aim do bridge this gap through feature engineering. Our computed features are concerned with two
broad categories: Temporal relations, created by discrete windows of time difference between events, as
well as mathematical relations between attributes, foremost the difference between the newly measured
stock and the previous stock, as well as the difference between an order delivery and the stock change.

All source code for this task can be found at https://github.com/dice-group/DAIKIRI/tree/
master/usecasel-data-conversion.

2.2 Plausibility of Data

The use case data has been manually inspected on a random sample for plausibility. According to
the documentation of the anomalies, in the use case data there should be a relation between the
replenishment of stock from incoming orders and the measured amount of stock. However, when a
random sample of the data was plotted (see Figure 1), this relation was not apparent. Hence, a
summary stock change event had to be introduced as follows:

At each discrete time point ¢, the total stock(s) of a Summary Stock Change s shall be defined as

total_ stock(s) := Z new_ stock(e)
(-ZGBS
FE is the set of all stock change events in an assortment, and
E D By := {e|replenished_at(e) < replenished_ at(s)
AVe' # e : replenished_ at(e") > replenished at(s) V replenished_at(e’) < replenished_ at(e)

Vboz_number_in_ site(e') # box_number_in_ site(e) }

All other attributes of the summary stock change are defined identically to the individual stock
changes. Using these events, we could correct the relation between orders and stock values.


https://github.com/dice-group/DAIKIRI/tree/master/usecase1-data-conversion
https://github.com/dice-group/DAIKIRI/tree/master/usecase1-data-conversion
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Figure 1: Plot investigating the amount of stock (y axis, blue dots) at a certain time (x axis), compared

to the stock replenished from incoming orders (orange dots). Lines connect events within the same
“bOX”,

2.3 Ontology Modelling

With all these considered, the first version of the ontology for this use case data could be modelled. A
graphical representation is shown in Figure 2. All objectives could be fulfilled:

e Classes have been identified (Customer, Site, Assortment are all hierarchical attributes in the
original data).

e The attributes of the original data have been mapped onto ontological properties.

e The events have been linked between each other. The relational links have been added. Each
Stock Change happens with regard to a Box, each Box belongs to an Assortment, and so on. The
newly introduced Summary Stock Changes have been linked to their contained events (set B).
Furthermore, each Stock Change event has been linked to an Order event when such an order
could be found within one of the discrete time windows.

2.4 Bridging the Language Gap

Our Structured Machine Learning library was started with support for the description logic ALC
([BHSO08|). Our aim towards the end of the project will be to extend this with support for data
properties. To make data properties contained in the use case data accessible to our existing approach,
we further mapped discrete attribute ranges to classes. For example, a delivery qty larger than 90 but
less than or equal to 100 would be additionally assigned the type DeliveryQty100.



Customer

Site

—| Assortment

— ——

Box

\
Preceding/up\qming event(s)

Stock Change

Preceding/upcoming event(s)
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Order

delivery_qty
delivery_wkdy
start_week

every_week
ordered_qty
ordering_at
reorder_point
replenished_at
confirmed_at

[ before/after/previnext ]

new_stock Summary Stock Change
old_.s.tock total_stock
positive_stock_change positive_stock_change
stock_diff stock_diff
replenished_at replenished_at
diff_to_order diff_to_order
time_delta time_delta

_ B

Figure 2: Design of the ontology for “Smart Logistics” use case data

3 Library for Structured Machine Learning

Development of the library for Structured Machine Learning was continued. Support for closed world
negation was completed. An exporter for the learning results was implemented. The data format for
saved class expression has been specified as RDF/XML!. This standardised interchange format will
also facilitate the verbalisation of the learned class expressions. Class expression rendering is now also
available in Manchester? OWL in addition to Description Logics syntax. Simplification algorithms
such as the Negation Normal Form ([RV01]|) have been added. One major change with regards to the
previous version concerns the usage of the LearningProblem interface. In order to support learning
algorithms that can be trained on multiple problems, the problem is now only used as an argument to
the fit() method and cannot be configured earlier. Refer to the updated API documentation on our
website for more information.

The library is released under an Open Source Licence and can be found on Github at https://
github.com/dice-group/Ontolearn.

! https://www.w3.org/TR/rdf - syntax-grammar/
2 https://www.w3.org/TR/owl2-manchester-syntax/


https://github.com/dice-group/Ontolearn
https://github.com/dice-group/Ontolearn
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/owl2-manchester-syntax/
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3.1 Generation of Class Expressions

The library for Structured Machine Learning also contains a generator for artificial learning problems.
This module can be used to find class expressions with ideal solutions. At the same time, it can also
be used as an input to test the verbalisation of class expressions.

To use it, follow the Python code below:

import os

from ontolearn.knowledge_base import KnowledgeBase
from ontolearn.learning_problem_generator import LearningProblemGenerator
from ontolearn.utils import setup_logging

setup_logging("logging_test.conf")
path = 'KGs/Biopax/biopax.owl'

kb = KnowledgeBase (path=path)

1lp = LearningProblemGenerator (knowledge_base=kb)

num_inds = kb.individuals_count ()

list(lp.get_concepts (num_problems=5000,
num_diff_runs=10,
min_num_instances=int(2),

concepts

max_num_instances=int (num_inds * .95),
min_length=4, max_length=40))

1p.export_concepts(concepts, path='example_concepts')

The Learning Problem Generator can be customised with several parameters as seen in the list-
ing. The num_problems specifies the desired number of class expressions in the result. The min-
and max_num_instances filter out class expressions that match at least/most the required number of
instances, and the min- and max_length select the length of the class expression.

Finally, the export concepts() method can be used to store the generated class expressions to an
RDF /XML document.

3.2 Data Format for Saved Class Expressions

In the listing below you can find an excerpt of an RDF /XML document as exported from the Learning
Problem Generator. It is very similar to the document that can be exported from the result of
running a learning algorithm. Each suggested problem is encoded in a Class with the sequential name
Pred_ #. As additional information, the number of individuals covered by the problem is exported as
an annotation property covered inds.

<?zml version="1.0"2>

<rdf:RDF zmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
zmlns:zsd="http://www.w3.0rg/2001/XMLSchema#"
zmlns:rdfs="http://www.w3.o0org/2000/01/rdf-schema#"

(continues on next page)
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(continued from previous page)

zmlns:owl="http://www.w3.0rg/2002/07/owl#"
zml :base="https://dice-research.org/predictions/1629502825.2758381"
zmlns="https://dice-research.org/predictions/1629502825.2758381#">

<owl:Ontology rdf:about="https://dice-research.org/predictions/1629502825.2758381">
<owl:imports rdf:resource="file://KGs/Biopax/biopax.owl"/>
</owl:0Ontology>

<owl:AnnotationProperty rdf:about="#covered_inds"/>

<owl:Class rdf:about="#Pred_0">
<owl:equivalentClass>
<owl:Class>
<owl:intersection0Of rdf:parselype="Collection">
<rdf:Description rdf:about="http://www.biopax.org/examples/glycolysis
—#interaction"/>
<owl:Class>
<owl:complementOf rdf:resource="http://www.biopax.org/examples/glycolysis
—#sequenceParticipant"/>
</owl:Class>
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
<covered_inds rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#integer">47</covered_
—inds>
</owl:Class>

3.3 Scalability

We took several attempts at improving the scalability of the Structured Machine Learning library. We
started with the use case data set as described in section 2. The converted data amounts to 50 GiB
file size which contains 238 million triples.

At first, it was not possible to process this data set using our initial library implementation, even
with 250 GiB of system memory. Later on, we could significantly improve this situation.

For the initial version, we profiled the Python data types and came to realise that loading the full
use case data set in our structures would require approximately 50 TiB of system memory.

Consequently, we had to remove the data loading and resorted to data set scanning instead for the
second iteration. This enabled us to load and process the use case data, with a speed of 13.53 expression
tests per hour.

The performance was still not satisfactory, so in our third iteration we encoded all the triples
as their C memory addresses and used Python’s FrozenSet data structure to store the object value
mappings. This yielded another 42 x performance improvement (see Figure 3).

We have started to work on SPARQL and Tentris [BCB120] based data access. Initial evaluation of
SPARQL-based access [BBLN16] suggests at least a potential doubling of performance. Furthermore,
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Expression tests per minute
12

10

Initial version Removal of property map FrozenSet with Cache

Figure 3: Performance of the different library versions (expression tests per minute)

we want to combine these approaches with parallel search strategies which might result in further
scalability enhancements.

4 Library for Verbalisation

This section follows the SROZQ™P) Concepts, Thoxes, and Aboxes definition in [HKSO06].

The OWL 2 Web Ontology Language® provides the expressiveness of SROT o®) [HKS06, HPS04].
A SROZO™) Thox element t is a general concept inclusion axiom of two concepts C and D. The
Library for Verbalization verbalizes Thox elements ¢ € 7. It builds on SimpleNLG[GRO09| version
4.5.0. The library uses given labels in the ontology for the verbalization and in case no label is given
for an element, it uses the given class or property name for the verbalization. Anonymous elements,
which have no labels (e.g., an inverse property), are not supported and are therefore not verbalized in
its current version.

4.1 Verbalization Rules

The corresponding expressions and axioms of ¢ are listed in Table 2 along with their common name
and OWL 2 DL syntax*. Example verbalizations of these expressions and axioms are listed in Table 3.
Additionally, some other OWL 2 classes and axiom are supported by semantics-preserving rewriting
to supported classes and axioms of the library (cf. Table 2). Those additional supported elements are
partially listed in Table 4.

For instance, an inclusion SubClass0f (C D) states that the class expression C is a subclass of the
class expression D. The Verbalization takes the class expressions that represent the subclass C and the
superclass D of an inclusion. Then, for both expressions, it creates a verbalization C,, D,. It creates a
clause with these verbalizations, using C, as noun phrase for the subject, "be" as verb phrase and D,
as complement for the object of the clause.

3 https://www.w3.org/TR/owl2-overview/
4 https://www.w3.org/TR/owl2-syntax/
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common name SROZL Q(D) OWL 2 DL

concept name A a:A

nominal/single individual {i} IRI, rdfs:label

top T Thing

bottom uE Nothing

conjunction cnb ObjectIntersection0f (C D)

disjunction cubD ObjectUnion0f (C D)

negation -C ObjectComplement0f (C)

universal role restriction VR.C onProperty(R), ObjectAllValuesFrom(C)
existential role restriction JIR.C onProperty(R), ObjectSomeValuesFrom(C)
self restriction 3S.5el f ObjectHasSelf (3)

atleast restriction (=nS.C) ObjectMinCardinality(n S C)

atmost restriction (< nS.C) ObjectMaxCardinality(n S C)

inclusion cCD SubClass0f (C D)

Table 2: List of supported elements.

4.2 Multilingual Verbalisation

The Verbalization library translates the English verbalizations with [TTL"20] to German in the current
version. The translated examples in Table 3 are

e Jedes Tier ist etwas, das mindestens einen Lebensraum hat.
e Jede Person ohne Kinder ist eine Person, die kein Kind hat.

e Jeder Autobesitzer ist etwas, dessen ein Unternehmen, eine Regierung oder eine Person, die ein
Auto besitzt.

e Jedes ruhige Ziel ist ein Reiseziel, das kein Familienziel ist.
e Jeder Mensch ist ein Tier, das sich kennt.

e Jeder bindre Baum ist ein Baum, der als Zweig nur einen bindren Baum hat und der héchstens
zwei Zweige hat.

e Jeder bindre Baum ist ein Baum.
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common name SROZQP) Verbalizations
top, ) ) Every animal is something that has
atleast Animal C (> lhasHabitat.T) at least one habitat.
restriction
bottom, PersonWithoutChildren = Person Every person without children is a
universal role M VhasChild. L person that has no child.
disjunction, AutomobileOwner C Every automobile owner is
existential role Company LI Government, L something whose a company, a
restriction Person M 3 own.Automobile government or a person and that
owns an automobile.
negation, QuietDestination = Destination Every quiet destination is a
conjunction M —FamilyDestination destination that is not a family
destination.

o Person = Animal Every person is an animal that
self restriction M Jknow.Sel f knows oneself.
universal role, BinaryTree = Tree Every binary tree is a tree that has
atmost M VhasBranch.BinaryTree M as branch only a binary tree and
restriction << QhaSBranch.T) that has at most two branches.
top
inclusion BinaryTree C Tree Every binary tree is a tree.

Table 3: Verbalized examples.
OWL classes and axioms Equivalent OWL classes and axioms

EquivalentClasses(Cl1 C2 ...) SubClass0f(C1 C2), SubClass0f(C2 C1), ...
DisjointClasses(Cl C2 ...) SubClass0f (C1 ObjectComplement0f(C2)), ...
EquivalentClasses(C ObjectUnion0f(C1 C2 ...)),
DisjointUnion(C C1 C2 ...)
DisjointClasses(Cl C2 ...)

ObjectOneOf (al a2 ...) ObjectUnion0f (ObjectOnelf (al) ObjectOnelf(a2) ...)

Table 4: Semantics-preserving rewriting of some OWL constructs that are additionally supported.
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5 Evaluation

5.1 Examples of Structured Machine Learning results

As a first proof of concept on the feasibility of using the Structured Machine Learning library on the
use case data described and transformed in Section 2, we randomly picked 12 assortments from the use
case data (approx. 0.3% of the full data set) and tasked the library to find explanations for anomaly?2.
The following results were obtained:

e When allowing the algorithm to look into the future:

PositiveStockChange M (Ytimewindow.(— Order)), Accuracy 98.761%
e With only the past available, and inverse relations:

PositiveStockChange (3 contains_event .
(Vorder_timewindow. (3previous. RelativeChange GE15L25))) ,

F1l-measure 98.454%

In the further progress of the project, we aim to extend the processing of the data and the
evaluation of the model to the full use case data set.

5.2 Examples of Verbalised Class Expressions

Two verbalized examples of class expressions on the use case data and the corresponding German
translations are shown below.

Pred 1 =(3contains_event.NegativeStockChange)r(Vorder _timewindow_1d.NegativeStockChange)

English: Every pred 1 is something that contains as individual event a stock change negative and
whose order within 1 Day is a stock change negative.

German: Jedes Pred 1 ist etwas, das als individuelles Ereignis eine Aktiendnderung negativ enthélt
und dessen Bestellung innerhalb von 1 Tag eine Aktiendnderung negativ ist.

Pred 2 = RelativeChangeGESL10L/(Jcontains _event.(Jtimewindow 1w.NegativeStockChange))

English: Every pred 2 is a relative change of >=8 <10% or that something that contains as individual
event something whose event within 1 Week is a stock change negative.

German: Jedes Pred 2 ist eine relative Anderung von >=8 <10% oder etwas, das als individuelles
Ereignis etwas enthélt, dessen Ereignis innerhalb einer Woche eine Aktiendnderung negativ
ist.

In the further progress of the project, we aim to extend the processing of the data and the
evaluation of the verbalization to the full use case data set.
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6 Conclusion

In this deliverable, we have presented our progress on data set transformation, Structured Machine
Learning Library and verbalisation of logical expressions. The results of the library applied to the use
case data have been heavily improved. As the next steps, we will continue working on improving the
scalability of the Structured Machine Learning library, as well as adding support for data types to
the library. For the Verbalisation library, we plan to implement data property verbalizations and to
improve the fluency of the verbalizations.
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