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Executive Summary

In this deliverable, we describe the integration of all DAIKIRI components created in work-packages
2-4 into our shared platform. The general setup and deployment of our shared platform, based on the
workflow execution engine Flyte, is shown in deliverable 5.1.
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1 Introduction

Based on the work done in packages 2-4 and the initial platform version (5.1), the goal of this deliverable
is to sum up the development of the final DAIKIRI platform in Flyte. The objective of the work
package is to integrate the individual work items into the Flyte workflow engine. For this purpose,
various workflows were created, which correspond to the individual sections. A total of 4 workflows
were implemented: 1) a white box workflow, 2) a black box workflow, 3) a combined approach consisting
of the two preceding workflows and 4) a SML workflow, which is executed after adoptions made by
the human in the loop. The white box workflow and the black box workflow were implemented as
standalone version, to make them independently executable.

=
© train_model ©-

== =
© model_predict © © write_predictions @ © end ©
© create_hashes @ © dataprep ©

O start ©
oo |
© dataprepwb @ © vector ©
© embeddings ©

=
© clustering ©

Figure 1: Combined workflow

The combined workflow thus can be divided into two parts: The data_prep, train_model,
model__predict, write_predictions are implementations of the black box workflow and data_ prep, vector,
embeddings, clustering are part of the white box workflow. * The sml workflow is a separate process
that is executed after completion of the combined approach.

! The name of Tasks in the standalone version can differ, to guarantee readability.
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2 Data Retrieval

At first, we created a data-retrieval task, which aim is to gather new data for the pipeline. The Task
reads new data from a specified location and processes the data if necessary to return a dataframe. The
data retrieval task varies depending on whether the implementation is based on a combined pipeline
adaption, where white box and black box approaches are combined, or whether its based on a standalone
white box implementation. Both approaches are demonstrated here. For the sake of simplicity, we will
focus on the white box approach for presenting the further implementations.

2.1 White box Approach

This task is logically separated into two different steps:
e Retrieving data
e Manipulating data

For demonstration purpose we are going to use a publicly available data-set (pyrimidine data), to
explain the implementation of the pipeline steps.

Otask()
def get_data()->pd.DataFrame:

url ='https://wwwéd.stat.ncsu.edu/~boos/var.select/pyrimidine.txt'

s=requests.get (url).content

df = pd.read_csv(io.StringI0(s.decode('utf-8')),sep="',")

return df
The def keyword is a python specific keyword, initializing a function, followed by its name (get__data())
and a specification of the output of the function - >pd.DataFrame?. The first two lines of code
correspond to the retrieval step. Here, the data is consumed from a static URL and reduced to
its content - this is saved to an internal variable called s. Printing this would return an unordered

collection of strings:

x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,%x24,
x25,x26,y,0.5,0.26,0.1,0.9,0.9,0.9,0.1,0.367,0.42,0.26,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,
0.367,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.571,0.5,0.26,0.1,0.1,0.1,0.5,0.1,0.367,0.58,0.42,
0.26,0.1,0.9,0.1,0.9,0.1,0.1,0.26,0.9,0.367,0.1,0.1,0.1,0.5,0.367,0.9,0.9

The next step is equivalent to the idea of data manipulation. Using pandas, a flexible and open source
data manipulation package for python, we are transforming the unordered collection to a dataframe,
which is returned from our function and consumed by the later tasks:

xl x2 x3 x4 x, y

0.5 026 0.1 0.9 wvalue, 0.571
0.5 026 0.1 0.1 wvalue, 0.900

The use of a stand-alone task for reading and processing data is particularly evident in regard to
possible extensions. For example the Task can further be enhanced by defining the URL as input
argument:

2 pd.DataFrame is a pandas specific notation for a dataframe.


https://pandas.pydata.org/
%5Bpandas.DataFrame%20\T1\textemdash %20pandas%201.4.2%20documentation%20(pydata.org)%5D(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)
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Otask()
def get_data(url:str)->pd.DataFrame:
Input:
url : url for data retrieval
s=requests.get(url).content
df = pd.read_csv(io.StringI0(s.decode('utf-8')),sep=",")
return df

In that case the URL would become dynamic and thus data from different inputs would be consumable.
Surly the step of data manipulation needs to be adjusted in dependency to the data source. The
usage of a stand-alone task, gives the opportunity, to implement a dynamic and input related data
consumption with ease:

@task()
def get_data(url:str,filetype:str)->pd.DataFrame:

1

Input:
url : url for data retrieval
if filetype == 'html':
s=requests.get(url).content
df = pd.read_csv(io.StringIO(s.decode('utf-8')),sep="',")
elif filetype == 'csv':
df = pd.read_csv(path=url)
elif filetype == 'parquet':
df = pd.read_parquet(path=url)
else:

# additional filetype
return df

For our final platform, we used the Google Cloud and data stored on a bucket. A Bucket? is a file
system for saving data on the google cloud. Every file in that case receives a certain URL:

gs://bucketname/your_path_to_file.filetype

where gs stands for google storage, bucketname for your globally unique name of your Bucket,
followed by the path to your file and finally ending with your file type. This procedure is Cloud
independent, because regardless which cloud is chosen, there always will be a URL to the respective
file. For a local application, the URL then corresponds to the path of the file on your local system.

2.2 Black box Approach

The data__prep task of the black box approach preprocesses the data as needed for the subsequent
training task. More details can be found in Walter and Witter [2022].

Enabling the task cache in combination with a cache version is helpful to reduce unneeded redundant
computations. If there are no changes in the input parameters and the cache version is the same, Flyte
does not execute the task at all, but re-uses the output from the actual computation. In most cases,
downstream tasks can therefore read the hashes from cache.

3 To connect to a Bucket or other types of cloud related storage’s, permissions as well as IP rules must be considered.


https://cloud.google.com/gcp/?hl=de&utm_source=google&utm_medium=cpc&utm_campaign=emea-de-all-de-bkws-all-all-trial-e-gcp-1011340&utm_content=text-ad-none-any-DEV_c-CRE_529379242747-ADGP_Hybrid%20%7C%20BKWS%20-%20EXA%20%7C%20Txt%20~%20GCP%20~%20General%23v3-KWID_43700060393213364-aud-606988878414%3Akwd-6458750523-userloc_9043916&utm_term=KW_google%20cloud-NET_g-PLAC_&gclid=EAIaIQobChMIpafHu46M-AIVYIxoCR0_1Q2NEAAYASAAEgJsQfD_BwE&gclsrc=aw.ds
https://cloud.google.com/storage/docs/creating-buckets?hl=de
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Listing 1 Data Preparation for black box approach

Otask(cache=True, cache_version="3", requests=Resources(cpu="2", mem="8G"))
def data_prep(input: pd.DataFrame, seed: int=1337) -> Dict[str, pd.DataFrame]:

data = _preprocess_data(data=input)

print('Loaded data')

data = _join_anomaly_types(data=data)

print ('Created joined anomalies')

feats = _compute_generic_features(feats=data, num_steps=3)

print ('Computed generic features')

feats = _compute_specific_features(feats=feats, window_size=20)

print ('Computed specific features')

feats = _clean_dataset(feats=feats)

print ('Cleaned dataset')

datasets = _split_dataset(feats=feats, seed=seed)

print('Split dataset')

datasets = _drop_cols(data=datasets)

return datasets

2.3 Combined Approach

The black box workflow is supposed to run with the same input data as the white box workflow, which
we ensure through a combined workflow. For training and evaluation of the black box ML model the
data needs to be splitted into train, evaluation and test set. Therefore, for every data point a hash is
calculated over all features of this data point. This enables us later to refer to a event i.e. data point.

Listing 2 Hash creation

Otask(cache=True, cache_version="3", requests=Resources(cpu="2", mem="8G"))
def create_hashes(input: CSVFile) -> pd.DataFrame:
path = input.download()
df = _load_data(path)
df ['supplier_item_number'] = df['supplier_item_number'].astype(str)
df ['hash'] = [hashlib.md5(str(row) .encode('utf-8')) .hexdigest() for index, row in df.iterrows()]
df = df.set_index('hash')

return df

The data__prep task of combined approach resembles a pass through of input data, where the data is
processed in the same manner as for the black box workflow. But here only the test set data is used.
Similar to the white box approach, the output is then consumed by the latter task.

Otask(cache=True, cache_version="3", requests=Resources(cpu="2", mem="8G"))

def data_prep_wb(input: pd.DataFrame, data: Dict[str, pd.DataFrame]) -> pd.DataFrame:
df = _get_split(hashed = input, splited = data)
return df
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3 Integration Embeddings

The embeddings part of the white box pipeline consists of a vectorization task and an embeddings task.
The implementation is explained in Demir [2021].

© getdata © © vector &
© embeddings ©
O start © © clustering © © end ©

Figure 2: White box workflow

3.1 Vectorization
Similar to the previous topic, we have created a Flyte task to perform the vectorization:

# Importing vectograph library
from vectograph.transformers import GraphGenerator
from vectograph.quantizer import QCUT

Q@task()
def vector(df: pd.DataFrame) -> pd.DataFrame:

X_transformed = QCUT(min_unique_val_per_column=5

,hum_quantile=4,duplicates='drop') .transform(df.rank(method="'first'))

X_transformed.index = 'Event_' + X_transformed.index.astype(str)

kg = GraphGenerator () .transform(X_transformed)

# Create Dataframe for Flyte transmisstion

df=pd.DataFrame (kg)

# Map Colnames tp string for parquet

df.columns = df.columns.map(str)

return df

Description for the steps used here, e.g. QCUT, can be found in Demir [2021]. To use the vectograph
library, the Flyte workflow needs to import the GraphGenerator and the QCUT function. For
demonstration purposes, we use the test data mentioned above. The QCUT function returns an
ontology based dataframe, where each row corresponds to an event:

Index Feature Category_x1 Feature Category x2 Feature_Category xn
Event_ 0 x1_ quantile_3 x2__quantile_ 1 xn__quantile_n
Event_1 x1_quantile 3 x2 quantile 1 xn__quantile_n
Event_ 2 x1_quantile 1 x2__quantile_ 2 xn__quantile_n
Event_3 x1_quantile_0 x2__quantile_ 3 xn__quantile_n

The following line of code alters the index column to be more readable with adding 'Event_’ previous
to the numeric value. This also is necessary as the GraphGenerator needs a string based input
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for the index column. The created X_ transformed object is then consumed by the GraphGenerator,
returning a knowledge graph which is stored as an object named kg. This array type object is then
transformed to a dataframe:

col 0 col 1 col 2

Event_ 0 Feature_ Category x1 x1_ quantile 3

Event_(0 Feature Category x2 x2_quantile 1

Event_n Feature_Category xn xn_ quantile n

Flyte stores data in between tasks as parquet files, which needs columns to have string names. To ensure
string column names, the following line of code df .columns = df.columns.map(str) was added to
make the pipeline robust against different column name notations. As above, the final dataframe is
returned and thus made consumable for the Embeddings task.

3.2 Embeddings

As in the previous section, the embeddings (Demir [2021]) part was implemented as a standalone task
within the Flyte workflow. Unlike vectorization, this task uses input arguments that must be entered
into Flyte via the workflow interface. Which arguments are entered via the interface and which are
provided with a default value can be varied as desired. However, it is important that the surface
arguments are passed on to the workflow task. The following variable arguments have been defined:

Variable Arguments Description

model The model for the Knowledge Graph Embedding
learning_ rate Learning Rate of embeddings model
num_folds for cv  Number of cross Validation Folds

max_ num_ epochs  Max. number of epochs for converging

The dataframe input corresponds to the output of the previous task.

# Importing executioner from embeddings
from executer import Execute

@task()
def embeddings(filename: pd.DataFrame,model: str,learning rate: float
,num_folds_for_cv: int,max_num_epochs:int) -> pd.DataFrame:

argparser = argparse.ArgumentParser()
args = argparse.Namespace(path_dataset_folder=filename,

model="{}".format (model),
num_folds_for_cv=num_folds_for_cv,


https://databricks.com/de/glossary/what-is-parquet
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max_num_epochs=max_num_epochs,
check_val_every_n_epochs=1000,
embedding_dim=10,
scoring_technique='NegSample',
learning_rate=learning_rate,
eval=1,

large_kg_parse=1,
deserialize_flag=None,
add_reciprical=False,
read_only_few=0,
storage_path='DAIKIRI_Storage',
negative_sample_ratio=1,
batch_size=512,
shallom_width_ratio_of_emb=1.5,
input_dropout_rate=0.1,
hidden_dropout_rate=0.1,
feature_map_dropout_rate=0.1,
apply_unit_norm=False,
num_workers=1

exec = Execute(args)

df=exec.start ()

# Map Colnames tp string for parquet
df.columns = df.columns.map(str)
return df

The original framework for embeddings was written as a CLI tool, which means that it was intended
and designed to be executed via command line. This is obvious due to the use of the python based
argparse package, which allows exactly this type of execution. In order to not rewrite the code and to
ensure the functionality of some dependencies within submodules, the arguments selected for input
are stored as args=argparse.Namespace(). The Namespace class stores the elements with a string
representation, which then can be parsed into the execution framework.

The embeddings framework was further adapted in that the execution was initiated via the immediate
execution script. For this purpose, the input arguments - both the standardized ones and the ones
defined at the interface - were transmitted to the execution script and an execution was initiated.

# Ezecute and starting embeddings
exec = Execute(args)
df=exec.start()

The result again is a dataframe containing the embeddings, which corresponds to the results of the
knowledge graph embedding model. Following the example data from above, the embeddings would
return a result similar to this:

Page 10


%5Bdice-group/dice-embeddings:%20Hardware-agnostic%20Framework%20for%20Large-scale%20Knowledge%20Graph%20Embeddings%20(github.com)%5D(https://github.com/dice-group/dice-embeddings)
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Event_0 0.06 -0.031 -0.11 0.01 0.159 -0.031 -0.119 0.110 0.08 -0.086

Event n w v v v v v v v v v

The task returns this dataframe and follows the procedure mentioned above, where numerical columns
are converted to string, so they can be stored as parquet.

4 Integration Semantification

4.1 Clustering

Explanations on the functionality as well as the purpose of the clustering task can be found here
Zahera et al. [2020]. This element of the pipeline was also designed as an independent task, which
had variable input arguments similar to the embeddings. Likewise, this CLI based framework was also
converted using a similar approach as above.

Furthermore, it was also designed to let the user define variable input arguments on the Flyte interface.
For the following task, these values were defined as manually determinable:

Variable Arguments Description

model The clustering model: kmeans, hdbscan or agglomerative

alpha The degree of conservativeness in cluster selection (only for hdbscan)
min_ samples The minimum number of neighbours to a core point (only for hdbscan)

cluster__selection__epsilon  Cluster radius definition (only for hdbscan)
min_ cluster The minimum number of points per cluster (only for hdbscan)

n_ cluster The number of clusters in total (only for kmeans and agglomerative)

However, there is a difference to the previous one: the input arguments to determine specifics of the
clustering procedure must be passed as a config file. Following the same principles as above, this was
implemented as part of the Flyte task, by creating a dictionary based on the given inputs. This corpus
becomes part of the input arguments and parsed to the specific clustering method:

config = {
"alpha" : alpha,
"metric" : metric,

"cluster_selection_method": cluster_selection_method,
"min_samples": min_samples,

"min_cluster_size": min_cluster_size,
"allow_single_cluster": allow_single_cluster,
"cluster_selection_epsilon": cluster_selection_epsilon,
"n_clusters": n_cluster


%5Bdice-group/DAIKIRI-Clustering:%20Create%20a%20first%20prototype%20for%20AP3.1%20using%20HDBSCAN%20algorithm%20(github.com)%5D(https://github.com/dice-group/DAIKIRI-Clustering)
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Static or default values were added at the Flyte workflow code block. To select a clustering method,
an if statement was added, which initiates a certain method based on the input for model argument.
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# Importing clusering library
from Clustering import *

@task()

def clustering(file: pd.DataFrame, model: str,alpha: float,
cluster_selection_method: str,min_samples: int,
min_cluster_size: int, allow_single_cluster: bool,
cluster_selection_epsilon: float,
n_cluster: int) -> pd.DataFrame:

# config file for static imput

config = {
"alpha" : alpha,
"metric" : metric,

"cluster_selection_method": cluster_selection_method,
"min_samples": min_samples,

"min_cluster_size": min_cluster_size,
"allow_single_cluster": allow_single_cluster,
"cluster_selection_epsilon": cluster_selection_epsilon,
"n _clusters": n_cluster

if model == "agglomerative":
cluster = Agglomerative_Clustering(data=file, config=config)
df=cluster.return_Output ()

elif model == "kmeans":
cluster = Centroid_Clustering(data=file, config=config)
df = cluster.return_Output()

elif model =="hdbscan":
cluster = Density_Clustering(data=file, config=config)
df = cluster.return_Output ()

else:
raise ValueError("No valid Custering submitted")

return df

The task returns a dataframe, containing clustered entities for each embedding defined earlier. Using
the clustering task on the previously returned embeddings dataframe, would thus return the following:

Entity Cluster

Event 0 O
Event 1 0
Event 2 2

Event_n value
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4.2 Axiom Generation

The axioms are generated via the LabENT module. More information about LabENT can be found
in Zahera and Heindorf [2021]. With this tool, human interaction is intended to (re-)label clusters.
Afterwards, the ontology can be written to an OWL file. LabENT is deployed on the same cluster as
the DAIKIRI platform to easily enable interactions.

5 Integration Structured Machine Learning

Structured machine learning is wrapped in a separate workflow since the afore achieved output of the
semantification process can be first adjusted manually via LabENT (chapter 4.2). After adoptions
made by a human in the loop the SML workflow can be started. The SML workflow can be executed
after the white box workflow, after the combined workflow or as standalone on external input data.

5.1 Structured Machine Learning

Listing 3 SML taks definition

from ontolearn.concept_learner import CELOE
from ontolearn.model_adapter import ModelAdapter
from owlapy.model import OWLNamedIndividual, IRI, OWLOntology, OWLReasoner

from owlapy.namespaces import Namespaces

O@task(cache=True, cache_version="1")
def SML(ontology: FlyteFile, pos_examples: FlyteFile, neg_examples: FlyteFile,
max_hypotheses: int = 50)-> FlyteFile:
ontology = ontology.download()
pos_examples = pos_examples.download()
neg_examples = neg_examples.download()

NS = Namespaces('ex', 'http://daikiri-semantificaion.de/onto.owl#')

positive_examples = read_examples(NS, pos_examples)

negative_examples = read_examples(NS, neg_examples)

# Only the class of the learning algorithm is specified
model = ModelAdapter (learner_type=CELOE,
reasoner_factory=ClosedWorld_ReasonerFactory,

path=ontology)

model.fit (pos=positive_examples, neg=negative_examples)
model .save_best_hypothesis(n=max_hypotheses, path='predictions')

return FlyteFile(path="predictions.owl")

For structured machine learning the open-source software library Ontolearn? is used. Ontolearn

provides efficient solutions for concept learning on RDF knowledge bases. It uses an OWL ontology

4 https://github.com/dice-group/Ontolearn
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and two txt files with positive and negative examples. Within the SML function the namespace is
hard-coded and needs to be adjusted for an other use case.

With ModelAdapter a new concept learner is created and trained afterwards. Subsequently, the best
hypothesis are saved.

5.2 Verbalization

The verbalization component in DAIKIRI is based on the daikiri-verbalizer open-source project® which
is written in Java. This is in contrast to most other DAIKIRI components, which are written in Python.
We first tried to use the Flyte Java API to implement the task, but we soon ran into issues with
authentication, as the flytekit-java API is not as mature as its Python counterpart. So we decided
to use another approach to integrate verbalization into our workflow. This approach leverages the
raw-container support of Flyte. From our Java verbalization project, we build a standalone Docker
container that reads inputs and writes outputs from and to specific locations and in a format understood
by Flyte. Then we use a raw-container task that executes the container. It takes the SML model and
a semantification ontology as input, runs the verbalization process and returns explanations for the
input concepts in natural language as CSV file. The raw-container task definition is shown in listing 4.

Listing 4 Raw-container task definition for verbalization

verbalize = ContainerTask(

name="verbalize",
input_data_dir="/var/inputs",
output_data_dir="/var/outputs",
inputs=kwtypes (input=FlyteFile, semantification=FlyteFile),
outputs=kwtypes (verbalizations=CSVFile),
image="europe-west4-docker.pkg.dev/usuai-daikiri/flyte-daikiri/verbalization:0.1.0",
command= [

"/opt/docker/bin/verbalization",

"/var/inputs",

"/var/outputs",

]’

Finally, once we have defined the raw-container task, we can use it as part of the workflow just as any
other task. Figure 3 shows the workflow for SML and verbalization.

® SML ©
raw-container
© start © © verbalize © ©® end ©

Figure 3: SML workflow

® https://github.com/dice-group/daikiri-verbalizer
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6 Black box Workflow and Simple Verbalization

For the black box workflow, we took the black box implementation described in Walter and Witter
[2022], and converted it into Flyte tasks. A standalone version of the black bor workflow looks as

follows:
© eval_model &
pthorrtack
@ train_model @&
© plot_classification_results @
© create_hashes ©
==
© start & © data_prep &

==
© verbalize &

Figure 4: black box workflow

® end ©

Listing 5 black box workflow with simple verbalizations

Output = NamedTuple("Output", model=JoblibSerializedFile,
eval=Dict[str, float], plot=PNGImageFile, verbalizations=pd.DataFrame)

@workflow
def pipeline(
input: CSVFile,
ano_ignore: str = ano_types[0],
seed: int = 1337) -> Output:
hashed_data = create_hashes (input=input)
data = data_prep(input=hashed_data, seed=seed)
model_file = train_model(data=data, ano_ignore=ano_ignore, seed=seed)
eval = eval_model(data=data, model_file=model_file)
plot = plot_classification_results(
data=data, model_file=model_file, ano_ignore=ano_ignore, seed=seed, perf=eval)
verbalizations = verbalize(data=data, model_file=model_file)

return Output(model=model_file, eval=eval, plot=plot, verbalizations=verbalizations)

After hash generation and data preparation as already treated in chapter 2.3 and chapter 2.2 a ML
model is learned, evaluated and the classification results are plotted. In case of the black box workflow
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a simple verbalization mechanism is used. First, SHAP values are calculated for the test data split.
Then, based on the SHAP values, all data point get a prediction and are explained by their most
important features and their actual values. This information is put together in natural language and
saved to a csv file.

7 Combined Approach

This approach uses the whole white box as it is and combines it in a smart way with the black box
approach. The data is labeled by the black box approach and the model explanations are extracted
by the white box and SML workflow. The combined workflow begins with the common task of
create_hashes. After hash creation the workflow splits into two branches. One for the black box
model and another one for the white box model.

Listing 6 Pipeline for Combined Workflow

Output = NamedTuple("Output", bb_model=JoblibSerializedFile,

pred_out=PredictionOutputs, cluster=pd.DataFrame)

Oworkflow
def pipeline(
input: CSVFile,
ano_ignore: str = ano_types[0],
seed: int = 1337,
model: str = "Shallom",
learning_rate: float = 0.01,
cv: int = 2,
epoch: int = 2,
cluster_model: str = 'kmeans',
n_clusters: int = 5,
min_cluster_size: int = 4) -> Output:
hashed_data = create_hashes(input=input)
# BB:
data = data_prep(input=hashed_data, seed=seed)
model_file = train_model(data=data, ano_ignore=ano_ignore, seed=seed)
pred = model_predict(model_file=model_file, data=data)
pred_out = write_predictions(pred=pred)
# WB:
df = data_prep_wb(input=hashed_data, data=data)
df_vec = vector (df=df)
df_embed = embeddings(filename=df_vec, model=model, learning_rate=learning_rate,
num_folds_for_cv=cv, max_num_epochs=epoch)
cluster = clustering(file=df_embed, alpha=0.1, metric="precomputed",
cluster_selection_method="leaf", model=cluster_model,
min_samples=10, min_cluster_size=min_cluster_size,
allow_single_cluster=True, cluster_selection_epsilon=0.9,
n_cluster=n_clusters)

return Output(bb_model=model_file, pred_out=pred_out, cluster=cluster)

Page 17



D52 -v. 1.0

Since there are no further data dependencies after the creation of the hashes, Flyte will automatically
run the white box and the black box part of the workflow in parallel.

The outputs of the pipeline are a file of the black box model, the predictions for the test data i.e. two
files with data points which are positive and negative examples, respectively, and the clusters. These
outputs can then serve as input into the SML workflow (see chapter 5).
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8 Coverage of non-functional requirements to ensure practical us-
ability

System requirements are divided into functional and non-functional requirements. This chapter
deals with the definition, classification and evaluation of non-functional requirements. In the first
subchapter, various definitions are compiled and summarized. Based on this summary, non-functional
requirements of the DAIKIRI platform are derived. The last section discusses the evaluation of the
elicited non-functional requirements.

8.1 What are non-functional requirements?

A large number of different definitions can be found in the literature that define non-functional
requirements (NFR). Glinz [2007] has collected different definitions from the literature to identify
similarities. The results of his work can be found in Table 8.

After collecting and considering several definitions of NFR from the literature, it becomes clear that
there is no uniform consent in the literature on how NFR are defined. Two important works in the NFR
framework literature Anton [1997] and Davis [1993] are worth highlighting. These works distinguish
functional from other quality attributes while considering cost, time, and productivity. This subdivision
differs from previous works, which define only requirements in terms of detailed functions, constraints
and attributes.

8.2 C(lassification of non-functional requirements

As with the definition of NFR, there are a variety of different classification approaches in the literature.
The ISO/IEC 9124 standard [Clements [2006]] describes that NFR can be classified into four different
classes. The approach distinguishes between quality during use, external quality, internal quality,
and process quality. The acronym FURPS stands for a model for classification of software quality
attributes or non-functional requirements, which was developed by Hewlett Packard. Later the model
was extended by additional attributes and renamed to FURPS+ [Robertson and Robertson [1999]].

o Functionality — Functionality, capabilities, generality, security
e Usability — Human factor, aesthetics, consistency, documentation
» Reliability — Frequency /severity of failure, recoverability

e Performance — Speed, efficiency, resource consumption, response time

e Supportability — Testability, extensibility, adaptability, maintainability, configurability, installa-
bility, transferability

For the DAIKIRI research project, we will make the classification of non-functional requirements
according to FURPS.

8.3 Identification of non-functional requirements

For this chapter, the previous definitions and classification approaches are used to survey NFRs of the
DAIKIRI platform.

Performance summarized requirements that are relate to the speed of the DAIKIRI platform. Under
the point speed the performance of the single tasks of a workflow as well as the performance of a
complete run is considered. Also the performance improvement of the parallelization is added.
Requirements such as aesthetics or consistency can be summarized under the point usability. However,
not only subjective points such as appearance are taken but also the existence of a documentation.



D52 -v. 1.0

Source definition

Anton [1997] Describe the non-behavioral aspects of a system,
by capturing the characteristics and constraints under which a system
must operate.

Davis [1993] The required overall characteristics of the system, including portability,
reliability, efficiency, human engineering, testability, understandability,
and modifiability.

Committee et al. | The term is not defined. The standard distinguishes between design
[1990] requirements, implementation requirements, interface requirements, per-
formance requirements and physical requirements.

Committee and || The term is not defined. The standard defines the categories of function-
Board [1998] ality, external interfaces, performance, attributes (portability, security,
etc.) and design constraints. Project requirements (e.g., schedule, cost,
or development requirements) are specifically excluded.

Jacobson [1999] A requirement that specifies system properties, such as environmental
and implementation performance, platform dependency, maintainabil-
ity, extensibility, and reliability. A requirement that specifies physical
constraints for a functional requirement.

Kotonya and Som- || Requirements that do not relate specifically to the functionality of a
merville [1998] system. They set constraints for the product to be developed and
the development process, and they specify external conditions that the
product must meet.

Mylopoulos et al. || Global requirements for development or operating costs, performance,
[1992] reliability, maintainability, portability, robustness, and the like. (...)
There is neither a formal definition nor a complete list of non-functional
requirements.

Ncube [2000] The behavioral characteristics that the specified functions must exhibit,
e.g., performance, ease of use.

Robertson  and || A characteristic or quality that the product must have, such as a certain
Robertson [1999] appearance, speed, or accuracy characteristic.

Table 8: NFR defintion

Page 20
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An important point when developing an application is the reliability of the application. Non-functional
requirements, which are summarized under the point Reliability, are failure frequency and recoverability
of the application.

The last category we divide NFR into is Supportebility. The category includes requirements such as
transferability of the application to the project sponsor.

8.4 Evaluation of non-functional requirements of the DAIKIRI platform.

In the previous chapter, the NFRs were divided into four categories: performance, usability, reliability
and supportability. This chapter deals with the evaluation of these four NFRs.

Performance

The backend of the DAIKIRI platform is based on the open source system Kubernetes, which was
developed by Google®. Through Kubernetes it is possible to parallelize workflows, tasks or calculations
in DAIKIRI. Parallelization allows multiple tasks to be executed simultaneously, which improves
runtime. The figure below depicts the workflow "workflows.combined.pipeline.pipline". The workflow
shown trains the black-box and white-box model. A parallelization strategy is particularly useful for
training the two models. In the figure 5 it can be seen that the first two tasks create hashes and
data__prep must run sequentially. The subsequent task black-box (data__prep_wb, vector, embeddings
and clustering) and white-box (train__model, model_predict and write__predictions) can be trained in
parallel.

< daikiri/development/workflows combined pipeline pipeline/altadqpzp2ccakamvtly

Domain Version Cluste: Time Duration AMRole  Servicedccount  RewOutputPrefic  Parslielism neernuptisle override
development  Be2aaf0335649e3c7afa74d41cBda978700ebb2a-20220531-105841 6/1/2022 8:50:;57 AMUTC ~ 35m31s  default  default o

Nodes Graph Timeline ~

9 train_model ?
p = BE==
+ model_predict @ + write predictions &1 © o end
+ creste hashes o @ & dazprep © |
start @
+ dataprepwb @ @ vector s

— \ ) ) ==
§ enbesdings 2 +
5 B - |

¢ dustering #

Show Legend
ResmF

Figure 5: black box and white box workflow

The Gantt chart in the figure 6 shows how DAIKIRI automatically parallelizes the different tasks. On
the figure 6 it can be seen that after the task data_prep the two models black-box and white-box run
in parallel. In total, 5 tasks are parallelized in the "workflows.combined.pipeline.pipline".

6 https://cloud.google.com /learn/what-is-kubernetes?hl=de
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& daikiri/development/workflows combined pipeline pipeline/alt4dapzp2ccBiamytis

rrrrrr Version Clust Time Duratiot IAMRole  ServiceAccount  RewOutpusPrefix  Parsllelsm  Interruptible override
development  8e2aaf0335649e3cTafa74d41c80ag978700ebb2a-20220531-105841 6/1/2022 8:50:57 AM UTC ~ 35m 315 default  default [}

18m 30

@® LocalTime () uTC

Figure 6: grantt chart black box and white box workflow

Parallelization can reduce the runtime by 6:22 minutes. This is an improvement of about 16%

Usability

The evaluation of usability is difficult because this requirement is a subjective judgment. To overcome
this problem, we are concerned with the design or arrangement of the elements within the user interface
(UI) of DAIKIRI. The requirement for the UI is to provide the user with an intuitive user interface.
The UI of the DAIKIRI platform can be divided into three parts. On the left side there is a navigation
bar that allows the user to navigate between 3 different areas. The user has the possibility to view
the project dashboard as well as access the workflows via the navigation bar. The last area that is
accessible to the user via the navigation bar are the individual tasks of a workflow.

The main focus of the DAIKIRI Ul is in the middle and right area of the UI. All relevant information
about the three areas is displayed there. For example, all existing workflows are displayed there with
additional information. During the conceptual design of DAIKIRI, relevant software development
requirements for usability were also taken into account. Software developers have the possibility to
develop in the three environments . In the context of the DAIKIRI platform, the environments are
Development, Staging and Production. These development environments can be accessed via the
navigation bar at the top of the page. It was particularly important within DAIKIRI to maintain a
consistent naming convention. Thus, as shown in the figure 7, the workflows are defined according to
the following scheme:

A workflow begins with workflows

After that comes the function of the workflow

Finally, the word pipeline comes twice.

o All three previous items are separated with a ..
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o0 (unknown)

Figure 7: flyte user interface

Reliability

The reliability requirements of the DAIKIRI platform are limited to the failure frequencies of runs. This
is especially relevant when training the two machine learning models. To find the optimal combination
of hyperparameters it is necessary to train a large number of models. In order to avoid restarting the
parameter tuning in between, it was especially important that the DAIKIRI platform runs stable.
To evaluate these requirements a hyperparameter tuning has been simulated. The simulation contains
46 runs in which different hyperparameters were tested. The results of the simulation can be found in
the figure 8. Out of 46 runs, there was a single operation that ran into an error.
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Figure 8: hyperparameter tuning

The last NFR evaluated in this chapter is Supportebility. This requirement is about the handover of
the DAIKIRI platform to the project sponsor. In addition, the recoverability of the software in case of

software errors is evaluated.

The handover of the software as well as the recoverability of the software are covered by a Git repository.
Via the Git repository, the source code of the DAIKIRI platform can easily be handed over to project

Sponsors.

Git is not only used in this NFR to commit the project, but Git can also be used to restore an older
but bug-free version of DAIKIRI. Should an error occur in the software.
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Figure 9: DAIKIRI Github repository

9 Conclusion

In this deliverable we showed how the DAIKIRI components were integrated into the DAIKIRI
plattform. We showed difficulties and pitfalls of the integration process. Benefits from using Flyte as
workflow engine are also highlighted.
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